Monday, December 15, 2014

2013 AMC 10 A and B : Solutions to the Harder Problems

From AoPS videos :


2013 AMC-10 B #23  It's a good idea to be able to get all those split-side lengths, height to the hypotenuse fast and right. Those are basic skills.

Also, you should be able to get the area, in-radius and others fast as well of 13-14-15 and 10-17-21
triangles.

2013 AMC 10 A Math Jam from AoPS  

2013 AMC 10 B Math Jam from AoPS 


Sunday, December 7, 2014

Problem Solving Strategies: Applications of the “Choose 2” method

1. Example: How many diagonals can be drawn for a polygon with “n” sides?

Method I:

The number of diagonals in a polygon = n(n-3)/2, where n is the number of polygon sides.

For a convex n-sided polygon, there are n vertexes, and from each vertex you can draw n-3 diagonals, so the total number of diagonals that can be drawn is n (n-3).

However, this would mean that each diagonal would be drawn twice, (to and from each vertex), so the expression must be divided by 2.

Method II:

nC2 (choose 2) - n sides = n(n-1)/ 2 – n sides


2. Example: There are n people at a party, each person shakes hands with the every other person once. How many handshakes?

Method I:
nC2 in this case (10 x 9) /2 =45
__ __ First slot you have 10 persons to choose from, second slot 9 persons. Since A shakes hands with B is the same as B shakes hands with A, so you divide the number by 2 and get the answer.

Method II:
Sum of the first consecutive Natural numbers: n (n+1) /2
The first person shakes hands with 9 other person; the second person shakes hands with 8 other person, etc…
So 9 + 8 + 7 + …= (9 x 10)/ 2 = 45

3. Example: N dots evenly spaced on a circle. How many chords can you make using those dots?

Methods: This is very similar to hand-shaking questions.

I: nC2

II: Sum of the first consecutive (N-1) Natural numbers


Word problems: Answers below.

#1 : A convex polygon with n sides has 20 diagonals. How many diagonals does an (n+1)-sided convex polygon have?

#2: A polygon has n sides and n diagonals. What is n? 

#3: How many diagonals does a decagon have?

#4: How many diagonals does a dodecagon have? 


#5: How many line segments have both their endpoints located at the vertexes of a given cube?

#6: There are 8 points on a circle, how many lines can you make? How many triangles can you make?

#7: If each of the interior angles of two regular polygons adds up to 255 degrees and their diagonals add up to 29, what is the sum of their sides?



























Answers: 

# 1- 27    #2 -5     #3-35      #4-54 [12C2 -12]     #5 28 [There are 8 vertices, so 8C2]



#6  8C2 = 28 for lines and 8C3 = 56 triangles   

#7: 6[hexagon] + 8[octagon] = 14 sides

Wednesday, November 12, 2014

Unit digit, Tenth digit and Digit Sum

Word problems on unit digit, tenth digit or digit sum.

#1: How many digits are there in the positive integers 1 to 99 inclusive? 

Solution I:  From 1 to 9, there are 9 digits.
From 10 to 99, there are 99 - 10 + 1 or 99 - 9 = 90 two digit numbers. 90 x 2 = 180
Add them up and the answer is 189.

Solution II:  ___ There are 9  one digit numbers (from 1 to 9).
___ ___ There are 9 * 10 = 90 two digit numbers (You can't use "0" on the tenth digit but you
can use "0" on the unit digit.) 90 * 2 + 9 = 189

# 2: A book has 145 pages. How many digits are there if you start counting from page 1?

There are 189 digits from page 1 to 99. (See #1, solution I)
From 100 to 145, there are 145 - 100 + 1 or 145 - 99 = 46 three digit numbers.
189 + 46*3 = 327 digits.

#3: "A book has N pages, number the usual way, from 1 to N. The total number of digits in the page number is 930. How many pages does the book have"?  Similar to one Google interview question.

Read the questions and others here from the Wall Street Journal.

Solution I: 
930 - 189 (digits of the first 99 pages) =741
741 divided by 3 = 247. Careful since you are counting the three digit numbers from 100 if the book has N
pages N - 100 + 1 or N - 99 = 247. N = 346 pages.

Solution II: 
930 - 189 (total digits needed for the first 99 pages) = 741
741/3 = 247 (how far the three digit page numbers go).
247 + 99 = 346 pages


#4: If you write consecutive numbers starting with 1, what is the 50th digit you write? 

Solution I:
50 - 9 = 41, 9 being the first 9 digits you need to use for the first 9 pages.

Now it's 2 digit. 41/2 = 20.1 , which means you will be able to write 20 two digit numbers + the first digit of the next two digit numbers.

10 to 29 is the first 20 two digit numbers so the next digit 3 is the answer. (first digit of the two digit number 30.)

Solution II: (50 - 9 ) / 2 = 20. 5 ; 20.5 + 9 = 29.5, so 29 pages + the first digit of the next two digit numbers, which is 3, the answer.


#5: What is the sum if you add up all the digits from 1 to 100 inclusive?

00  10  20  30  40  50  60  70  80  90
01  11  21  31  41  51  61  71  81  91
02  12  22  32  42  52  62  72  82  92
03  13  23  33  43  53  63  73  83  93
04  14  24  34  44  54  64  74  84  94
05  15  25  35  45  55  65  75  85  95
06  16  26  36  46  56  66  76  86  96
07  17  27  37  47  57  67  77  87  97
08  18  28  38  48  58  68  78  88  98
09  19  29  39  49  59  69  79  89  99

Solution I:
Do you see the pattern?  From 00 to 99 if you just look at the unit digits.
There are 10 sets of ( 1+ 2 + 3 ... + 9) , which gives you the sum of 10 * 45 = 450
How about the tenth digits? There are another 10 sets of (1 + 2 + 3 + ...9) so another 450
Add them up and you have 450 * 2 = 900 digits from 1 to 99 inclusive.
900 + 1 ( for the "1" in the extra number 100) = 901 

Solution II:
If you add the digits on each column, you have an arithmetic sequence, which is
45 + 55 + 65 ... + 135  To find the sum, you use average * the terms (how many numbers)
\(\dfrac {45+135} {2} * \left( \dfrac {135-45} {10}+1\right)\) =900
900 + 1 = 901

Solution III :
2*45*101 + 1 = 901


Problems to practice: Answers below.

#1: A book has 213 pages, how many digits are there?

#2: A book has 1012 pages, how many digits are there?

#3: If you write down all the digits starting with 1 and in the end there are a: 100, b: 501 and c: 1196 digits, what is the last digit you write down for each question?

#4: What is the sum of all the digits counting from 1 to 123? 










Answers: 
#1: 531 digits. 
#2: 2941 digits.
#3: a. 5, b. 3, c. 3
#4: 1038 









Tuesday, September 23, 2014

Similar triangles, Trapezoids and Triangles that Share the Same Vertices

Check out Mathcounts here, the best competition math program for middle school students.
Download this year's Mathcounts handbook here.

This is an interesting question that requires understanding of dimensional changes. (They are everywhere.)

Question: If D and E are midpoints of AC and AB respectively and the area of ΔBFC = 20, what is the 
a. area of Δ DFB? 
b. area of Δ EFC?
c. area of Δ DFE? 
d. area of Δ ADE? 
e. area of trapezoid DECB? 
f. area of Δ ABC?








Solution:

DE is half the length of BC (D and E are midpoints so DE : BC AD  : AB = 1 : 2

Δ DFE and ΔCFB are similar and their area ratio is 12 : 22  = 1 : 4  (If you are not sure about this part, read this link on similar triangles.)

so the area of Δ DFE = (1/4) of ΔBFC = 20 = 5 square units. 

The area of Δ DFB = the area of Δ EFC = 5 x 2 = 10 square units because Δ DFE and Δ DFB,   
Δ DFE and ΔEFC share the same vertexs D and E respectively, so the heights are the same. 
Thus the area ratio is still 1 to 2. 

Δ ADE and ΔDEF share the same base and their height ratio is 3 to 1, so the area of
Δ ADE is 5 x 3 = 15 square units.


[DE break the height into two equal length and the height ratio of Δ DFE and ΔCFB is 1 to 2 (due to similar triangles) so the height ratio of Δ ADE and ΔDEF is 3 to 1.]

The area of trapezoid DEBC is 45 square units.

The area of Δ ABC is 60 square units. 


Extra problems to practice (answer below): 
The ratio of   AD and AB is 2 to 3,  DE//BC and the area of Δ BFC is 126, what is the area of

a. Δ DFE ? 

b. Δ DFB ?

c.  Δ EFC ? 

d.  Δ ADE? 

e. How many multiples is it of Δ ABC to ΔBFC?










Answer key: 
a. 56 square units
b. 84 square units
c. 84 square units
d. 280 square units
e. 5 times multiples. 







 

Thursday, September 4, 2014

Sep. 4th, 2014 AMC-8 and Mathcounts State/National prep

To prepare for AMC-8 and Mathcounts simultaneously, it's a good idea to delete AMC-8 multiple choice options to make the test more like Mathcounts problems.

There are some tricky questions for AMC-8 test, so if you are at the Mathcounts state level in above average states, you might get better scores on AMC-10 tests than on AMC-8. (Sigh...)

That's what happened to quite a few of my students because their level is way up so they might not as focused as they worked on the more challenging, more interesting questions. Oh dear !!

Review the following very frequently tested concepts. You really don't need a lot of tools (formulas) but deeper understanding, tenacity and the love of thinking outside the box.

Review similar triangles

Review counting and probability

I'll put solutions to some of the "Mass Points" questions soon.

We all love "Mass Points".

Have fun problem solving. Cheers, Mrs. Lin