Showing posts with label Mathcounts practices. Show all posts
Showing posts with label Mathcounts practices. Show all posts

Wednesday, March 23, 2022

Dimensional Change






There are lots of questions on dimensional change and this is a very common one.

Make sure you understand the relationship among linear, 2-D (area) and 3-D (volume) ratio.

There are many similar triangles featured in the image on the left.
Each of the two legs of the largest triangles is split into 4 equal side lengths.





                                                                                            


Question : What is the area ratio of the sum of the two white trapezoids to the largest triangle? 
\(\dfrac {\left( 3+7\right) } {16}=\dfrac {10} {16}=\dfrac{5}{8}\)  

Question: If the area of the largest triangles are 400 square units, what is the area of the blue-colored trapezoid?
\(\dfrac {5} {16}\times 400\) =125 square units 






Again, each of the two legs are split into three equal segments. 

The volume ration of the cone on the top to the middle frustum to the 
bottom frustum is 1 : 7 : 19. 
 
Make sure you understand why.










 

Monday, November 7, 2016

How Many Zeros?

Problems: (Solutions below.)

#1. 2003 Chapter Team # 7--How many zeros are at the end of (100!)(200!)(300!) when multiplied out?

#2. How many zeros are at the end of 2013!? 

#3. How many zeros are at the end of 10! *9!*8!*7!*6!*5!*4!*3!*2!*1!*0!?

#4. What is the unit digit of 10! + 9! + 8! + 7! + 6! + 5! + 4! + 3! + 2! + 1! + 0!?

#5. The number \(3^{4}\times 4^{5}\times 5^{6}\) written out in full. How many zeros are there are at the end of the number?

#6. How many zeros are at the end of (31!)/(16!*8!*4!*2!*1!)

#7. 2009 National Sprint #18-- What is the largest integer n such that \(3^{n}\) is a factor of 1×3×5×…×97×99?












Solutions:
#1.For 100!, there are -- 100/5 = 20 , 20/5 = 4 (Stop when the quotient is not divisible by 5 and then add up all the quotients.), or 20 + 4 = 24 zeros.
For 200!, there are 200/5 =40 , 40/5 = 8, and  8/5 = 1, or total 40 + 8 + 1 = 49 zeros.
For 300!, there are 300/5 = 60, 60/5 = 12, and 12/5 = 2, or total 60 + 12 + 2 = 74 zeros.
Add all the quotients and you get 147 zeros. 

#2. Use the same method as #1 and the answer is 501 zeros.

#3:Starting at 5!, you have one "0", the same goes with 6!, 7!, 8!, and 9!
10! will give you 2 extra "0"s. Thus total 7 zeros.

#4: Since starting with 5! you have "0" for the unit digit, you only need to check 4! + 3! + 2! + 1! + 0!.
24 + 6 + 2 + 1 + 1 = 34 so the unit digit is 4.

#5: Make sure to prime factorize all the given number sequences, in this case, it's \(3^{4}\times 2^{10}\times 5^{6}\) after you do that.
2 * 5 = 10 will give you a zero since there are fewer 5s than 2s so the answer is 6 zeros.

#6: You need the same number of 2 and 5 multiple together to get a "0".
31! gives you 30/5 = 6, 6/5 = 1 or 6 + 1 = 7 multiples of 5
31! gives you 10//2 = 15...15/2 = 7...7/2 = 3...3/2 = 1 or 15 + 7 + 3 + 1 = 26 multiples of 2. 16!*8!*4!*2!*1! gives you 4 multiples of 5 and 8 + 4 + 2 + 1 (16!) + 4 + 2 + 1 (8!) + 2 + 1 (4!) + 1(2!)
= 26 multiples of 2.
Thus the multiples of 2s all cancel out, the answer is "0" zeros. 

#7: There are 3*1, 3*3, 3*5...3*33 or \(\dfrac {33-1} {2}+1=17\) multiples of 3.
There are 9*1, 9* 3...9*11 or \(\dfrac {11-1} {2}+1 = 6\) extra multiples of 3.
There are 27*1, 27*3 or 2 extra multiples of 3.
There is 81*1 or 1 extra multiples of 3.
Add them up and the answer is 26.