Showing posts with label 2013 Mathcounts state prep. Show all posts
Showing posts with label 2013 Mathcounts state prep. Show all posts

Sunday, May 18, 2025

The Grid Technique in Solving Harder Mathcounts Counting Problems : from Vinjai



The following notes are from Vinjai, a student I met online. He graciously shares and offers the tips here on how to tackle those harder Mathcounts counting problems. 

The point of the grid is to create a bijection in a problem that makes it easier to solve. Since the grid just represents a combination, it can be adapted to work with any problem whose answer is a combination.

For example, take an instance of the classic 'stars and bars' problem (also known as 'balls and urns', 'sticks and stones', etc.):
Q: How many ways are there to pick an ordered triple (a, b, c) of nonnegative integers such that a+b+c = 8? (The answer is 10C2 or 45 ways.)
Solution I: 
This problem is traditionally solved by thinking of ordering 8 stars and 2 bars. An example is:
* * * |    | * * * * *
  ^       ^       ^
  a       b       c
This corresponds to a = 3, b = 0, c = 5.

Solution II: 
But this can also be done using the grid technique:




The red path corresponds to the same arrangement: a = 3, b = 0, c = 5. The increase corresponds to the value: a goes from 0 to 3 (that is an increase of 3), b goes from 3 to 3 (that is an increase of 0), and c goes from 3 to 8 (that is an increase of 5). So a = 3, b = 0, c = 5.

Likewise, using a clever 1-1 correspondence, you can map practically any problem with an answer of nCk to fit the grid method. The major advantage of this is that it is an easier way to think about the problem (just like the example I gave may be easier to follow than the original stars and bars approach, and the example I gave in class with the dice can also be thought of in a more numerical sense).

Monday, February 17, 2025

Harder Mathcounts State/AMC Questions: Intermediate level if you can solve in less than 2 mins.

2012 Mathcounts State Sprint #30: In rectangle ABCD, shown here, point M is the midpoint of side BC, and point N lies on CD such that DN:NC = 1:4. Segment BN intersects AM and AC at points R and S, respectively. If NS:SR:RB = x:y:z, where x, y and z are positive integers, what is the minimum possible value of x + y + z? 

Solution I :


\(\overline {AB}:\overline {NC}=5:4\) [given]

Triangle ASB is similar to triangle CSN (AAA)

\(\overline {NS}:\overline {SB}= 4 : 5\)

Let \(\overline {NS}= 4a,  \overline {SB}= 5a.\)






Draw a parallel line to \(\overline {NC}\) from M and mark the interception to \(\overline {BN}\)as T.

 \(\overline {MT}: \overline {NC}\) = 1 to 2. [\(\Delta BMT\) and \(\Delta BCN\) are similar triangles ]

\(\overline {NT} = \overline {TB}= \dfrac {4a+5a} {2}=4.5a\)

\(\overline {ST} = 0.5a\)

 \(\overline {MT} :  \overline {AB}\) = 2 to 5
[Previously we know  \(\overline {MT}: \overline {NC}\) = 1 to 2 or 2 to 4 and  \(\overline {NC}:\overline {AB}= 4 : 5\) so the ratio of the two lines  \(\overline {MT} :  \overline {AB}\) is 2 to 5.]


\(\overline {TB} = 4.5 a\)  [from previous conclusion]

Using 5 to 2 line ratio [similar triangles \(\Delta ARB\) and \(\Delta MRT\) , you get \(\overline {BR} =\dfrac {5} {7}\times 4.5a =\dfrac {22.5a} {7}\) and \(\overline {RT} =\dfrac {2} {7}\times 4.5a =\dfrac {9a} {7}\)

Thus, x : y : z = 4a : \( \dfrac {1} {2}a + \dfrac {9a} {7}\) : \(\dfrac {22.5a} {7}\) = 56 : 25 : 45

x + y + z = 126

Solution II : 
From Mathcounts Mini: Similar Triangles and Proportional Reasoning

Solution III: 
Using similar triangles ARB and CRN , you have \(\dfrac {x} {y+z}=\dfrac {5} {9}\).
9x = 5y + 5z ---- equation I

Using similar triangles ASB and CSN and you have \( \dfrac {x+y} {z}=\dfrac {5} {4}\).
4x + 4y = 5z  ---- equation II

Plug in (4x + 4y) for 5z on equation I and you have 9x = 5y + (4x + 4y) ; 5x = 9y ; x = \(\dfrac {9} {5}y\)
Plug in x = \(\dfrac {9} {5}y\) to equation II and you have z  =  \( \dfrac {56} {25}y\)

x : y : z = \(\dfrac {9} {5}y\)  : y  :  \( \dfrac {56} {25}y\) =  45 y :  25y  :  56y

45 + 25 + 56 = 126


























Solution IV : Yes, there is another way that I've found even faster, saved for my private students. :D 

Solution V : from Abhinav, one of my students solving another similar question : 

Two other similar questions from 2016 AMC A, B tests : 

2016 AMC 10 A, #19 : Solution from Abhinav 






2016 AMC 10 B #19 : Solution from Abhinav 





Thursday, December 29, 2016

2013 Mathcounts School and Chapter Harder Problems

You can now download and discuss with your friends this year's school and chapter problems.
Here is the link to the official Mathcounts website.

Some more challenging problems from this year's Mathcounts school/or chapter problems.

2013 school team #10 : Three concepts are testing here :
Hint: 
a. If you get rid of the remainder, the numbers will be evenly divided into 192, so you are looking at
those factors of 192 - 12 = 180

b. To leave a remainder of 12, those factors of 180 that are included in the Set must be smaller than 12, otherwise, you can further divide it.

c. To find the median, make sure to line up the numbers from the smallest to the largest and find the middle numbers. If there are even numbers of factors larger than 12, average the middle two. Otherwise, the middle number is the answer.



\(180=2^{2}\times 3^{2}\times 5 \) so there are (2 + 1) (2 + 1) (1 + 1) = 18 factors

The list on the left side gives you the first 9 and if you times those numbers with "5", you get 9 other factors,which are 5, 10, 20, 15, 18, 60, 45, 90 and 180.

Discard the factors that are smaller or equal to 12 and list all the other factors in order and find the median.

The answer is "36".



2013 Chapter Sprint:
#21: Dimensional change problem : The height of the top pyramid is \(\dfrac {2} {3}\) of the larger
pyramid so its volume is \(\left( \dfrac {2} {3}\right) ^{3}\) of the larger pyramid.

\(\left( \dfrac {2} {3}\right) ^{3}\times \dfrac {1} {3}\times \left( \dfrac {36} {4}\right) ^{2}\times 12
= \) \(96  cm^{3}\)

# 24:  According to the given:   \(xyz=720\)   and   \(2( xy+yz+zx)= 484 \) so
\(( xy+yz+zx )= 242\)

Since x, y and z are all integers, you factor 720 and see if it will come up with the same x, y and z values
for the second condition.

Problem writer(s) are very smart using this number because the numbers "6", "10", "12" would give you
a surface area of 252. (not right)

The three corrrect numbers are "8", "9", and "10" so the answer is \(\sqrt {8^{2}+9^{2}+10^{2}}=\) \(7\sqrt {5}\)

#25: Geometric probability: Explanations to similar questions and more practices below. 

Probability with geometry representations form Aops.

Geometric probability from "Cut the Knots".

#26: This one is similar to 2002 AMC-10B #21, so try that question to get more practices. 
2002 AMC-10B #21 link 

#27:
\(\dfrac {1} {A}+\dfrac {1} {B}=\dfrac {1} {2}\)
\(\dfrac {1} {B}+\dfrac {1} {C}=\dfrac {1} {3}\)
\(\dfrac {1} {C}+\dfrac {1} {A}=\dfrac {1} {4}\)
Add them up and you have  \(2 * (\dfrac {1} {A}+\dfrac {1} {B}+ \dfrac {1} {C})=\dfrac {13} {12}\)

\((\dfrac {1} {A}+\dfrac {1} {B}+ \dfrac {1} {C})=\dfrac {13} {24}\)

\(\dfrac {1} {\dfrac {1} {A}+\dfrac {1} {B}+\dfrac {1} {C}} = \)\(\dfrac {{24}} {13}\) hours

#28: Hint : the nth triangular number is the sum of the first "n" natural numbers and \(\dfrac {n\left( n+1\right) } {2}\) is how you use to find the sum.
From there, you should be able to find how many numbers will be evenly divided by "7".

#29 : Circle questions are very tricky so make sure to find more problems to practice accuracy.

#30 :  
Solution I: 
Read the solution that is provided by Mathcounts.org here.
Solution II:
Case 1 : \(x-1 > 0\rightarrow x > 1\) Times ( x - 1) on both sides and you have
\(x^{2}-1>8\) so x > 3 or x < -3 (discard)

Case 2: \(x-1 < 0\) so \(x < 1\) \(\rightarrow x^{2}-1 < 8\) [You need to change the sign since it's negative.]-3 < x < 3. Combined with x < 1 you have the range as -3 < x < 1
The answer is 60%.









                                               2013 Mathcounts Target #7 and 8: 

Target question #8 is very similar to 2011 chapter team #10
It just asks differently.   
Read the explanations provided on the Mathcounts official website.
They are explained very well.
Let me know if there are other easier ways to tackle those problems.

Hope this is helpful !! Thanks a lot !! Good luck on Mathcounts state.

Tuesday, November 29, 2016

Geometry : Harder Chapter Level Quesitons


Question #1 : The area ratio of two equilateral triangles are 4 to 9 and the sum of their perimeter is 30 3 . What is the area of the a. smaller triangle   b. larger triangle?  

Solution: 
If the area ratio of two similar polygons is 4 to 9, their corresponding line ratio would be  4  to  9  
or 2 to 3.[Make sure you know why.]
The perimeter of the two equilateral triangles is 30 3 so the smaller triangle has a perimeter of
2/5 *  30 3 or 12 3. One side is 4 3 . Using the formula of finding the area of an equilateral triangle \(\dfrac{\sqrt3*s^2}{4}\) , you get the area to be 12 3.

Use the same method to get the area of the larger triangle as 27 3.
You can also use ratio relationship to get the area of the larger triangle by 
multiply 12 3 by 9/4.


2007 Mathcounts Chapter Sprint #30: In parallelogram ABCD, AB = 16 cm, DA = 32 cm, and sides AB and DA form a 45-degree interior angle. In isosceles trapezoid WXYZ with WX ≠ YZ, segment WX is the longer parallel side and has length 16 cm, and two interior angles each have a measure of 45 degrees. Trapezoid WXYZ has the same area as parallelogram ABCD. What is the length of segment YZ?

Solution I:
Make sure you know how to get the unknown leg fast. The height of the parallelogram is 82, so the area of the parallelogram is 48 square units. [Check out the special right triangle section here if you can't get the height fast.]

Let YZ of the trapezoid be x and draw the height. Using 45-45-90 degree angle ratio, you'll get the height. (See image above.)
Area of the trapezoid is average of the two bases time height. WX = 16 (given)
\(\dfrac{(16+x)* (16-x)}{4}\) = 48 ; 256 - x2 = 192 ;  - x2 = - 64;  x = 8 = YZ

Solution II: 


Make the y be the height of the trapezoid. YZ = 16 - 2y.  \(\dfrac{(16-2y + 16)}{2}\) * y = 48
\({(16 -y)* y = 48}\)\(\rightarrow\) \({16y -y^2 = 48}\) \(\rightarrow\) \({y^2 - 16y + 48 = 0}\) \(\rightarrow\) \({(y -12)(y -4)=0}\) \(\rightarrow\) \({y = 4}\) or \({y = 12}\)(doesn't work)
 YZ = 16 - 2y. Plug in y = 4 and you have  YZ = 8

Solution III: Let the height be y and you have \(\dfrac{(\overline{YZ}+ 16)* y}{2}"\) = 48 ; ( YZ + 16) * y = 96
When there are some numbers multiply together equal another number, it's a factoring question.
32 * 3 = 96, YZ = 16 (doesn't work)
24 * 4 = 96, YZ =8

Monday, November 14, 2016

2017 Mathcounts State Prep: Some Counting and Probability Questions on Dot Grids

Check out Mathcounts here, the best competition math program for middle school students.
Download this year's Mathcounts handbook here. (It's free.)

#5 1993 Mathcounts National Target : Find the probability that four randomly selected points on the geoboard below will be the vertices of a square? Express your answer as a common fraction.













#5 2004 AMC 10A: A set of three points is chosen randomly from the grid shown. Each three-point (same image as the below question) set has the same probability of being chosen. What is the probability that the points lie on the same straight line?
















2007 Mathcounts Chapter Sprint #29 : The points of this 3-by-3 grid are equally spaced
horizontally and vertically. How many different sets of three points of this grid can be the three
vertices of an isosceles triangle?












Solution:
#5 National Target: There are 16C4 = \(\dfrac {16\times 15\times 14\times 13} {4\times 3\times 2\times 1}\)= 1820 ways to select 4 points on the geoboard.

There are 3 x 3 = 9  one by one squares and 2 x 2 = 4 two by two squares and 1 x 1 = 1 three by three squares. (Do you see the pattern?)
                                                         




There are 4 other squares that have side length of √ 2
and 2 other larger squares that have side length of 5.

9 + 4 + 1 + 4 + 2 = 20 and \(\dfrac {20} {1820}=\dfrac {1} {91}\)






#5: Solution:
AMC-10A: There are 9C3 = \(\dfrac {9\times 8\times 7} {3\times 2\times 1}\)= 84 ways to chose the three dots and 8 of the lines connecting the three dots will form straight lines. (Three verticals, three horizontals and two diagonals.) so 
\(\dfrac {8} {84}=\dfrac {2} {21}\)

#29: Solution: 
Use the length of the two congruent legs to solve this problem systematically. 



 There are 16   1 - 1 - \(\sqrt {2}\)    isosceles triangles.
There are 8    \(\sqrt {2}\)  by  \(\sqrt {2}\) by 2 isosceles triangles. (See that ?)







There are 4     2 - 2 - \(2\sqrt {2}\)  isosceles triangles.
There are 4    \(\sqrt {5}\)  by  \(\sqrt {5}\) by 2 isosceles triangles.
Finally, there are \(\sqrt {5}\)  by  \(\sqrt {5}\) by \(\sqrt {2}\) isosceles triangles.
Add them up and the answer is 36.  




Thursday, December 12, 2013

2014 Mathcounts State Prep : Folding Paper Questions

Folding paper questions are not too bad so here are two examples:
 

Question #1:  The two side lengths of rectangle ABCD is "a" and "b". If you fold along EF and the point B now converges on point D, what is the length of \(\overline {EF}\)?

Solution I :
Let the length of \(\overline {FC}\)  be x and the length of \(\overline {FD}\)  is thus a - x.

Using Pythagorean theorem you'll easily get x (the \( x^{2}\) part cancel each other out) and from there get the length of a - x.

\(\overline {HD}\) = \(\dfrac {1} {2}\) of the hypotenuse. (Use Pythagorean theorem or Pythagorean triples to get that length,)

Again, using Pythagorean theorem you'll get the length of \(\overline {HF}\). Times 2 to get \(\overline {EF}\).

Solution II : 
After you find the length of x, use \(\overline {EG}\), which is a - 2x and b as two legs of the right triangle EGF, you can easily get \(\overline {EF}\). (Pythagorean theorem)

Question #2: 

What about this time you fold B to touch the other side.
 What is the length of EF? 

This one is not too bad.

Do you see there are two similar triangles?

Just make sure you use the same corresponding sides to get the desired
length.

Thursday, February 21, 2013

2013 Mathcounts State Prep : Inscribed Circle Radius and Circumscribed Circle Radius of a right triangle


Question: \(\Delta\) ABC is a right triangle and a, b, c are three sides, c being the hypotenuse.
What is a. the radius of the inscribed circle and
b. the radius of the circumscribed circle? 

Solution a :
Area of the right \(\Delta\)ABC =  \(\dfrac {ab} {2}\) = \(\dfrac {\left( a+b+c\right) \times r} {2}\)
r =\(\dfrac {ab} {a+b+c}\)

Solution b: 
In any right triangle, the circumscribed diameter is the same as the hypotenuse, so the circumscribed radius is\(\dfrac {1} {2}\) of the hypotenuse, in this case \(\dfrac {1} {2}\) of c or \(\dfrac {1} {2}\) of \(\overline {AC}\)



Some other observations: 
A. If you only know what the three vertices of the right triangle are on a Cartesian plane, you can use distance formula to get each side length and from there find the radius.





B.In right \(\Delta\)ABC , \(\overline {AC}\) is the hypotenuse.
If you connect B to the median of \(\overline {AC}\), then \(\overline {BD}\) = \(\overline {AD}\) = \(\overline {CD}\) = radius of the circumscribed circle

Sunday, February 10, 2013

2013 Mathcounts State Prep: Counting Problems

Please check out Mathcounts, the best middle school competition program up to the national level.

#1: 2006 Mathcounts state : My three-digit code is 023. Reckha can’t choose a code that is the same as mine in two or more of the three digit-positions, nor that is the same as mine except for switching the positions of two digits (so 320 and 203, for example, are forbidden, but 302 is fine). Reckha can otherwise choose any three-digit code where each digit is in the set {0, 1, 2, ..., 9}. How many codes are available for Reckha?

Solution:
Do complementary counting. Use total possible ways minus those that are not allowed. 
 
You can't use two or more of the numbers that are at the same position (given) as 203, which means that you can't have 0 __ 3, __ 23, or 02__.

For each of the __, you can use 10 digits (from 0, 1, 2 ... to 9) so 10 + 10 + 10 = 30.

However, you repeat 023 three times in each case so you need to minus 2 back so not to over count.
30-2 = 28

Also, you can't just switch two digits, which means 320, 203 and 032 are not allowed.  { but 302 and 230 are allowed since you are switching all the digits }

There are 10 x 10 x 10 = 1000 digits total and 1000 - 28 - 3 = 969   The answer

#2: 2011 AMC-8 # 23: How many 4-digit positive integers have four different digits where the leading digit is not zero, the integer is a multiple of 5, and 5 is the largest digit?

Solution: 
For the integer to be a multiple of 5, there are two cases: 

Case I: The unit digit is 5 :  __ __ __ 5
There are 4 numbers to choose for the thousandth digit [since 5 is the largest digit and you can't have "0" for the leading digit so there are 4 numbers 1, 2, 3, 4 that you can use], 4 numbers to choose for the hundredth
digit (0 and one of the remaining 3 numbers that are not the same number as the one in the thousandth digit) and 3 numbers to choose for the tenth digit (the remaining 3 numbers) so total 4 x 4 x 3 = 48 ways

Case II:  The unit digit is 0: __ __ __ 0
One of the remaining three numbers has to be 5, and for the remaining 2 numbers, there are 4C2 = 6 ways
to choose the 2 numbers from the numbers 1, 2, 3 or 4.
There are 3! arrangements for the three numbers so 6 x 3! = 36

48 + 36 = 84 ways


Wednesday, February 6, 2013

2013 Mathcounts State Prep : Angle Bisect and Trisect Questions

Proof : 
2y = 2x + b (exterior angle = the sum of the other two interior angles)
--- equation I

y = x + a (same reasoning as above)
--- equation II

Plug in the first equation and you have
2y = 2x + 2a = 2x + b

2a = b

  
Here is the link to the Angle Bisector Theorem, including the proof and one example.


Angle ABC and ACB are both trisected into three congruent angles of x and y respectively. 
If given angle "a" value, find angle c and angle b.  

Solution: 3x + 3y = 180 - a

From there, it's very easy to find the value of x + y
and get angle c, using 180 - (x + y).

Also, once you get 2x + 2y, you can use the same method -- 180 - (2x + 2y) to get angle b




Monday, February 4, 2013

2013 Mathcounts State Prep: Partition Questions

#24 2001 Mathcounts Sate Sprint Round: The number 4 can be written as a sum of one or more natural numbers in exactly five ways: 4, 3+1, 2 + 1 + 1, 2 +2 and 1 + 1 + 1 + 1; and so 4 is said to have five partitions. What is the number of partitions for the number 7?

#2: Extra: Try partition the number 5 and the number 8. 

Solution: 
#24: You can solve this problem using the same technique as counting coins:

7     6    5    4    3    2    1

1                                           1 way
       1                                    1 way
             1                 1           2 ways ( 5 + 2 or 5 + 1 + 1)
                   1    1                  1 way
                   1           1           2 ways ( 4 + 2 + 1 or 4 + 1 + 1 + 1)
                         2     0   1      1 ways
                         1     2           3 ways ( 3 + 2 + 2, 3 + 2 + 1 + 1 and 3 + 1 + 1 + 1 + 1)
                                3           4 ways (2 + 2 + 2 + 1, 2 + 2 + 3 ones, 2 + 5 ones and 7 ones.)

Total 15 ways.

The partitions of 5 are listed below (There are 7 ways total.):

5   4   3   2   1
1                           1 way
     1                      1 way
          1    1           2 ways  (3 + 2 and 3 + 1 + 1)
                2           3 ways  (2 + 2 + 1, 2 + 1 + 1 + 1 and 1 + 1 + 1 + 1 + 1)

There are 22 ways to partition the number 8.

Thursday, January 17, 2013

2013 Mathcounts State Prep: Harder State Questions

Check out Mathcounts here, the best competition math program for middle school students.
Download this year's Mathcounts handbook here.

2004 Mathcounts State Sprint #19: The points (x, y) represented in this table lie on a straight line. The point (13, q) lies on the same line. What is the value of p + q? Express your answer as a decimal to the nearest tenth. 
 
Solution: 
#19:  Look at the table and you'll see each time x + 2, y would -3. 
-5 to -14 is (-9), three times (-3) so p = 2 + 3 x 2 = 8
p would = 13 when 2 + 5.5 * 2 = 13 so q = -5  +  (5.5) * (-3) = -21.5
p + q = -13.5

2004 Mathcounts State Sprint #24: The terms x, x + 2, x + 4, ..., x + 2n form an arithmetic sequence, with x an integer. If each term of the sequence is cubed, the sum of the cubes is - 1197. What is the value of n if n > 3?
Solution: 
The common difference in that arithmetic sequence is 2 and the sum of the cubes is -1197, which means that these numbers are all odd numbers. (cubes of odd numbers are odd and the sum of odd terms of odd numbers is odd. )

(-5)3 + (-7)3 + (-9)3 = -1197  However, n is larger than 3 (given) so the sequence will look like this:
 (-9)3+ (-7)3+ (-5)3+ (-3)3+ (-1)3 + (1)3 + (3)3 = -1197
 x = - 9 and x + 2n = 3, plug in and you get -9 + 2n = 3;  n = 6