Wednesday, November 12, 2014

Unit digit, Tenth digit and Digit Sum

Word problems on unit digit, tenth digit or digit sum.

#1: How many digits are there in the positive integers 1 to 99 inclusive? 

Solution I:  From 1 to 9, there are 9 digits.
From 10 to 99, there are 99 - 10 + 1 or 99 - 9 = 90 two digit numbers. 90 x 2 = 180
Add them up and the answer is 189.

Solution II:  ___ There are 9  one digit numbers (from 1 to 9).
___ ___ There are 9 * 10 = 90 two digit numbers (You can't use "0" on the tenth digit but you
can use "0" on the unit digit.) 90 * 2 + 9 = 189

# 2: A book has 145 pages. How many digits are there if you start counting from page 1?

There are 189 digits from page 1 to 99. (See #1, solution I)
From 100 to 145, there are 145 - 100 + 1 or 145 - 99 = 46 three digit numbers.
189 + 46*3 = 327 digits.

#3: "A book has N pages, number the usual way, from 1 to N. The total number of digits in the page number is 930. How many pages does the book have"?  Similar to one Google interview question.

Read the questions and others here from the Wall Street Journal.

Solution I: 
930 - 189 (digits of the first 99 pages) =741
741 divided by 3 = 247. Careful since you are counting the three digit numbers from 100 if the book has N
pages N - 100 + 1 or N - 99 = 247. N = 346 pages.

Solution II: 
930 - 189 (total digits needed for the first 99 pages) = 741
741/3 = 247 (how far the three digit page numbers go).
247 + 99 = 346 pages


#4: If you write consecutive numbers starting with 1, what is the 50th digit you write? 

Solution I:
50 - 9 = 41, 9 being the first 9 digits you need to use for the first 9 pages.

Now it's 2 digit. 41/2 = 20.1 , which means you will be able to write 20 two digit numbers + the first digit of the next two digit numbers.

10 to 29 is the first 20 two digit numbers so the next digit 3 is the answer. (first digit of the two digit number 30.)

Solution II: (50 - 9 ) / 2 = 20. 5 ; 20.5 + 9 = 29.5, so 29 pages + the first digit of the next two digit numbers, which is 3, the answer.


#5: What is the sum if you add up all the digits from 1 to 100 inclusive?

00  10  20  30  40  50  60  70  80  90
01  11  21  31  41  51  61  71  81  91
02  12  22  32  42  52  62  72  82  92
03  13  23  33  43  53  63  73  83  93
04  14  24  34  44  54  64  74  84  94
05  15  25  35  45  55  65  75  85  95
06  16  26  36  46  56  66  76  86  96
07  17  27  37  47  57  67  77  87  97
08  18  28  38  48  58  68  78  88  98
09  19  29  39  49  59  69  79  89  99

Solution I:
Do you see the pattern?  From 00 to 99 if you just look at the unit digits.
There are 10 sets of ( 1+ 2 + 3 ... + 9) , which gives you the sum of 10 * 45 = 450
How about the tenth digits? There are another 10 sets of (1 + 2 + 3 + ...9) so another 450
Add them up and you have 450 * 2 = 900 digits from 1 to 99 inclusive.
900 + 1 ( for the "1" in the extra number 100) = 901 

Solution II:
If you add the digits on each column, you have an arithmetic sequence, which is
45 + 55 + 65 ... + 135  To find the sum, you use average * the terms (how many numbers)
\(\dfrac {45+135} {2} * \left( \dfrac {135-45} {10}+1\right)\) =900
900 + 1 = 901

Solution III :
2*45*101 + 1 = 901


Problems to practice: Answers below.

#1: A book has 213 pages, how many digits are there?

#2: A book has 1012 pages, how many digits are there?

#3: If you write down all the digits starting with 1 and in the end there are a: 100, b: 501 and c: 1196 digits, what is the last digit you write down for each question?

#4: What is the sum of all the digits counting from 1 to 123? 










Answers: 
#1: 531 digits. 
#2: 2941 digits.
#3: a. 5, b. 3, c. 3
#4: 1038 









Tuesday, September 23, 2014

Similar triangles, Trapezoids and Triangles that Share the Same Vertices

Check out Mathcounts here, the best competition math program for middle school students.
Download this year's Mathcounts handbook here.

This is an interesting question that requires understanding of dimensional changes. (They are everywhere.)

Question: If D and E are midpoints of AC and AB respectively and the area of ΔBFC = 20, what is the 
a. area of Δ DFB? 
b. area of Δ EFC?
c. area of Δ DFE? 
d. area of Δ ADE? 
e. area of trapezoid DECB? 
f. area of Δ ABC?








Solution:

DE is half the length of BC (D and E are midpoints so DE : BC AD  : AB = 1 : 2

Δ DFE and ΔCFB are similar and their area ratio is 12 : 22  = 1 : 4  (If you are not sure about this part, read this link on similar triangles.)

so the area of Δ DFE = (1/4) of ΔBFC = 20 = 5 square units. 

The area of Δ DFB = the area of Δ EFC = 5 x 2 = 10 square units because Δ DFE and Δ DFB,   
Δ DFE and ΔEFC share the same vertexs D and E respectively, so the heights are the same. 
Thus the area ratio is still 1 to 2. 

Δ ADE and ΔDEF share the same base and their height ratio is 3 to 1, so the area of
Δ ADE is 5 x 3 = 15 square units.


[DE break the height into two equal length and the height ratio of Δ DFE and ΔCFB is 1 to 2 (due to similar triangles) so the height ratio of Δ ADE and ΔDEF is 3 to 1.]

The area of trapezoid DEBC is 45 square units.

The area of Δ ABC is 60 square units. 


Extra problems to practice (answer below): 
The ratio of   AD and AB is 2 to 3,  DE//BC and the area of Δ BFC is 126, what is the area of

a. Δ DFE ? 

b. Δ DFB ?

c.  Δ EFC ? 

d.  Δ ADE? 

e. How many multiples is it of Δ ABC to ΔBFC?










Answer key: 
a. 56 square units
b. 84 square units
c. 84 square units
d. 280 square units
e. 5 times multiples. 







 

Thursday, September 4, 2014

Sep. 4th, 2014 AMC-8 and Mathcounts State/National prep

To prepare for AMC-8 and Mathcounts simultaneously, it's a good idea to delete AMC-8 multiple choice options to make the test more like Mathcounts problems.

There are some tricky questions for AMC-8 test, so if you are at the Mathcounts state level in above average states, you might get better scores on AMC-10 tests than on AMC-8. (Sigh...)

That's what happened to quite a few of my students because their level is way up so they might not as focused as they worked on the more challenging, more interesting questions. Oh dear !!

Review the following very frequently tested concepts. You really don't need a lot of tools (formulas) but deeper understanding, tenacity and the love of thinking outside the box.

Review similar triangles

Review counting and probability

I'll put solutions to some of the "Mass Points" questions soon.

We all love "Mass Points".

Have fun problem solving. Cheers, Mrs. Lin

Wednesday, August 20, 2014

Notes to Sunday Nights' Problem Solving Group Lessons

This week's work : Please review the last 8 hardest AMC-8 problems from 2005 to 2011 + finish the last 8 hardest AMC-8 problems from 2012 and 2013 if you haven't done that.

Some notes and questions.

Question #1 : How many ways can you climb up a ten-step staircase if you climb only one or two steps at a time ?

Solutions I :
Make a chart, starting with a smaller case.
one-step staircase -- 1 way, which is 1.
two-step staircase -- 2 ways, which is 1, 1 or 2.
three-step staircase -- 3 ways, which is 1 1 1, 1 2 or 2 1.
four-step staircase -- 5 ways, which is 1111, 211, 121, 112, 2222.

Notice the pattern - - 1 , 2, 3, 5, 8, 13, 21, 34, 55, 89, which is the answer; it also happens that it's
part of the Fibonacci numbers.

Why does it work that way ?

Well, if you climb the 3-step staircase, there are two cases :
You either take one step at first, and there are 2-step left, which leaves you two ways to climb the remaining staircase.
Or you take two step at first, and there are 1 step left, which leaves you one way to climb the remaining staircase.
If you climb the 4-step staircase, again, there are two similar cases :
You either take one step at first, and  then there are 3-step left, which leaves you 3 ways to climb the remaining staircase.
Or you take two step at first, and there are 2 step left, which leaves you 2 way to climb the remaining staircase.

Thus, it's always the sum of the previous two terms for the next staircase steps.
This concept is called recursion.

Now try another question :
2010 AMC-8 #25 : Every day at school, Jo climbs a flight of 6 stairs. Joe can take the stairs, 1, 2 or 3 at a time. For example, Jo could climb, 3, then 1, then 2. In how many ways can Jo climb the stairs ?

Solution I :
List out all the possible ways.
111111  -- 1 way
21111 -- 5C1 = 5 ways to arrange the steps
2211 -- 4!/2! x 2! = 6 ways to arrange the steps
222-- 1 way
3111 -- 4C1 or 4 ways to arrange the steps
123 -- 3! or 6 ways
33 -- 1 way
Sum them up and the answer is 24.

Solution II :
Using recursion, starting with the smallest case.
1 step -- 1 way
2 steps-- 2 ways (11, or 2)
3 steps -- 4 ways (111, 21, 12, or 3)
4 steps -- 1 + 2 + 4 = 7 ways (why??)
5 steps -- 2 + 4 + 7 = 13 ways.
6 steps -- 4 + 7 + 13 = 24 ways, which is the answer.

Besides these, please review the following questions.

Answer key below.

Q #1  1988 AMC-8 #25 : A palindrome is a whole number that reads the same forwards as backwards. If one neglects the colon, certain times displayed on a digital watch are palindromes. Three examples are 1: 01, 4: 44 and 12: 21. How many times during a 12-hour period will be palindromes?

Q#2  2004 Mathcounts sprint  #21: If |-2a + 1| < 13, what is the sum of the distinct possible integer values of a?

Q#3  2004 Mathcounts sprint #30 : A particular right square-based pyramid has a volume of 63,960 cubic meters and a height of 30 meters. What is the number of meters in the length of the lateral height (AB) of the pyramid? Express your answer to the nearest whole number.










Answer key :

#1 : 57

#2 : 6

#3 : 50





Thursday, August 14, 2014

Dimensional Change Questions II


Dimensional change questions II:   Answer key below.
If you've found you are not solid yet with these problems,
slow down and start with Dimensional change questions I.

1a. There is a regular cylinder, which has a height equal to its radius. If the radius and height are both increased by 20%, by what % does the total volume of the cylinder increase?

1b. If the radius and height are both decreased by 20%, by what % does the total volume of the cylinder decrease?

1c. If the radius is increased by 50% and the height is decreased by 25%, what % of the volume of the original cylinder does the volume of the new cylinder represent?

1d. If the radius is increased by 25% and the height is decreased by 50%, what % of the volume of the original cylinder does the volume of the new cylinder represent?

1e. If the height is increased by 300%, what % does the radius need to be decreased by for the volume to remain the same?

2. If the side of a cube is increased by 30%, by what % does the total surface area of the cube increase? By what % does the volume increase?

3a. If the volume of a cube increases by 174.4%, by what % does the total surface area of the cube increase?

3b. By what % did the side length of the cube increase?

















 
Answer key to dimensional change questions II: 

1a. There is a regular cylinder, which has a height equal to its radius. If the radius and height are both increased by 20%, by what % does the total volume of the cylinder increase?

72.8%

1b. If the radius and height are both decreased by 20%, by what % does the total volume of the cylinder decrease?

48.8% (Only 0.83 = 0.512 = 51.2% of the original percentage left and 100% - 51.2% = 48.8%.)

1c. If the radius is increased by 50% and the height is decreased by 25%, what % of the volume of the original cylinder does the volume of the new cylinder represent?

168.75%

1d. If the radius is increased by 25% and the height is decreased by 50%, what % of the volume of the original cylinder does the volume of the new cylinder represent?

78.125%

1e. If the height is increased by 300%, what % does the radius need to be decreased by for the volume to remain the same?

50%

2. If the side of a cube is increased by 30%, by what % does the total surface area of the cube increase? By what % does the volume increase?

The surface area will increase 69% and the volume will increase 119.7%

3a. If the volume of a cube increases by 174.4%, by what % does the total surface area of the cube increase?

96%

3b. By what % did the side length of the cube increase?

40%