Tuesday, August 16, 2016


From Mathcounts Mini :

Counting/Paths Along a Grid

From Art of Problem Solving

Counting Paths on a Grid 

Math Principles : Paths on a Grid : Two Approaches 

Question #1: How many ways to move the dominoes on a 6 by 6 checker board if you can only move the dominoes to the right or to the bottom starting from the upper left and you can't move the dominoes diagonally? 

Solution :
You can move the dominoes 5 times to the right at most and 5 down to
the bottom at most, so the answer is \(\dfrac {\left( 5+5\right) !} {5! \times 5!}\) = 252 ways

Question # 2: How many ways can you  move from A to B if you can only move downward and to right? 

Solution : There are \(\dfrac {\left( 4+4\right) !} {4!\times 4!}\) * 2 * \(\dfrac {\left( 4+4\right) !} {4!\times 4!}\) = 9800 ways from A to B