Sunday, August 30, 2015

Rate, Time, and Distance Question

Question: Harder SAT question: Esther drove to work in the morning at an average speed of 45 miles per hour. She returned home in the evening along the same route and averaged 30 miles per hour. If Esther spent a total of one hour commuting to and from work, how many miles did Esther drive to work in the morning?

Solutions I:
Let t be the time it took Esther to drive to work and (1-t ) be the time it took him to return home.
Since rate times time = distance, we can set the equation as 45 t = 30 (1- t), 75t = 30 so
t = \(\frac{\Large{2}}{\Large{5}}\) Plug in t to the previous equation : 45 * \(\frac{\Large{2}}{\Large{5}}\) = 18 miles ,which is the answer.

Solution II: 
Let D be the distance from Esther's home to work. 
\(\frac{\Large{D}}{\Large{45}}\) \(\frac{\Large{D}}{\Large{30}}\) = 1 (hour)
Times 90 both sides to get rid of the denominator and you have 2D + 3D = 90 
D = 18 miles
Solution III:
The rate ratio between driving to work and returning home is 45 : 30 or 3 :  2.
Since rate and time are inversely related (rt = d), the time ratio between the two is 2 : 3. 
45*\(\frac{\Large{2}}{\Large{5}}\) * 1 (hour) = 18 miles

Solution IV: (from Varun in FL)
The average speed can be found by harmonic mean: \(\dfrac {2\times 45\times 30}{45+35}\) = 36 mph. She drives for a total of 1 hour, so she drives 36 miles. Since she drives the same distance both ways, the distance to work is \(\dfrac {36} {2}\)=18 miles.

Question 1991 Mathcounts National #28 : A man is running through a train tunnel. When he is \(\frac{\Large{2}}{\Large{5}}\) of the way through, he nears a train that is approaching the tunnel from behind him at a speed of 60 mph. Whether he runs ahead or runs back, he will reach an end of the tunnel at the same time the train reaches that end. At what rate, in miles per hour, is he running? (Assume he runs at a constant rate.)





Solution : When the man went back \(\frac{\Large{2}}{\Large{5}}\) of the length of the tunnel, the train is at the beginning of the tunnel. 

Same thing happened if the men went ahead \(\frac{\Large{2}}{\Large{5}}\) of the length of the tunnel. The time it took the train to run through the length of the tunnel, the man could only run \(\frac{\Large{1}}{\Large{5}}\) of the same distance. 

So the speed of the man is \(\frac{\Large{1}}{\Large{5}}\) of the train's speed, which is \(\frac{\Large{1}}{\Large{5}}\) * 60 or 12 mph.  








Question #3: Sally drives to her aunt's house, which is 84 miles away, at 40 miles per hour and comes back home at 60 miles per hour. What is her average speed? 
Solution I: 
To find average speed, you use total distance over total time it takes Sally to drive. 
It takes Sally \(\frac{\Large{84}}{\Large{40}}\) + \(\frac{\Large{84}}{\Large{60}}\), or total 3.5 hours 
to drive 84 * 2 = 168 miles. 
\(\frac{\Large{168}}{\Large{3.5}}\) = 48 mph

Solution II: 
Similar to dimensional change question, as long as the segments are constant, the distance Sally drives is extraneous. Thus, it's much easier to use \(\frac{\Large{2}}{\frac{\Large{1}}{\Large{40}} - \frac{\Large{1}}{\Large{60}}}\)or \(\frac{\Large{2*40*60}}{\Large{40+60}}\) = 48 mph


Question #4: If Sally drives to her work at 40 miles per hour, she will be 15 minutes late. If she drives to her work at 60 miles per hour, she will be 15 minutes early, what speed will she arrive at her work on time?  How far away is her office ? 
Solution I: 
Let t be the time (hpm) Sally drives to her work on time. According to the given, we can set up 
the following equation: 
40 (t + \(\frac{\Large{1}}{\Large{4}}\)) = 60 ( t- \(\frac{\Large{1}}{\Large{4}}\) )
40 t + 10 = 60 t - 15 ;      25 = 20t ;       t = 1.25
Plug in to get the distance as 40 (1.25 + 0.25) = 60 miles

To get the average, use total distance over total time she spent \(\rightarrow\) \(\frac{D}{T}\) = \(\frac{\Large{120}}{\Large{1.5 + 1}}\) = 48 mph

Solution II :
Again, have you noticed that if  both time (late or early) to arrive to the destination is the same, the easiest
method is to still use the harmonic mean. \(\rightarrow\) \(\frac{\Large{2*a * b}}{\Large{a + b}}\)
a and b are the rates. \(\frac{\Large{2*40*60}}{\Large{40+60}}\) = 48 mph
 

Saturday, August 15, 2015

Hints/links or Solutions to 2014 Harder Mathcounts State Sprint and Target question

Links, notes, Hints or/and solutions to 2014 Mathcounts state harder problems.

Sprint round:

#14 :
Solution I :
(7 + 8 + 9)  + (x + y + z)  is divisible by 9, so the sum of the three variables could be 3, 12, or 21.
789120 (sum of 3 for the last three digits) works for 8 but not for 7.
21 is too big to distribute among x, y and z (all numbers are district),
thus only x + y + z = 12 works and z is an even number
__ __ 0 does't work (can't have 6 6 0 and the other pairs all have 7, 8 or 9)
264 works (789264 is the number)

Solution II : 
789000 divided by the LCM of 7, 8 and 9, which is 504 = 1565.47...
Try 504 * 1566 = 789264 (it works)
The answer is 264.

#18:
Watch this video from Mathcounts mini and use the same method for the first question,
you'll be able to get the answer. It's still tricky, though.

#23 : Drop the heights of the two isosceles triangles and use similar triangles to get the length of FC.
Then solve.

#24: 
The key is to see 210 is 1024 or about 103

230 = ( 210 ) or about (103  )3about 109 so the answer is 10 digit.

#25:
As you can see, there are two Pythagorean Triples : 9-12-15 and 9-40-41.
Base (40-12) = 28 gives you the smallest area.
The answer is 28 * 18 = 504































#26 : Let there be A, B, C three winners. There are 4 cases to distribute the prizes.
A     B    C
1      1     5    There are 7C1 * 6C1 * \( \dfrac {3!} {2!}\) = 126 ways -- [you can skip the last part for C
because it's 5C5 = 1]

1       2    4    There are 7C1* 6C2 * 3! = 630

1      3     3    There are 7C1 * 6C3 * \( \dfrac {3!} {2!}\) = 420

2      2    3     There are 7C2 * 5C2 * 3 (same as above)

Add them up and the answer is 1806.

If you can't see why it's \( \dfrac {3!} {2!}\) when there is one repeat, try using easier case to help you understand.

What about A, B two winners and 4 prizes ?
There are 2 cases, 1 3 or 2 2, and you'll see how it's done.

#27 : Read this and you'll be able to solve this question at ease, just be careful with the sign change.
Vieta's Formula and the Identity Theory

#28: There are various methods to solve this question.
I use binomial expansion :
\(11^{12}=\left( 13-2\right)^{12}=12C0*13^{12}\)+ \(12C1*13^{11}*2^{1}\)+... \(12C11*13^{1}*2^{11}\)+ \(12C12*2^{12}\) Most of the terms will be evenly divided by 13 except the last term, which is \(2^{12}\) or 4096, which, when divided by 13, leaves a remainder of 1.

Solution II :
\(11\equiv -2\left ( mod13\right)\) ; \((-2)^{12}\equiv 4096\equiv 1\left ( mod13\right)\)

Solution III :  
Or use Fermat's Little Theorem (Thanks, Spencer !!)
\(11^{13-1}\equiv 11^{12}\equiv1 (mod 13)\)

Target Round : 

#3: This question is very similar to 2012 chapter target #8.
See this link for similar question.

#6: This question is very similar to this Mathcounts Mini.
My students should get a virtual bump if they got this question wrong.

#8: Solution I : by TMM (Thanks a bunch !!)
Using similar triangles and Pythagorean Theorem.

The height of the cone, which can be found usinthe Pythagorean  is $\sqrt{10^2-5^2}=5\sqrt{3}$. 
Usingthediagram below, let $r$ be the radius of the top cone and let $h$ be the height of the topcone. 
Let $s=\sqrt{r^2+h^2}$ be the slant height of the top cone.

//cdn.artofproblemsolving.com/images/ad1f21b9f50ef27201faea84feca6f2e6e305786.png

Drawing the radius as shown in the diagram, we have two right triangles. Since the bases of the top cone and the original cone are parallel, the two right triangles are similar. So we have the proportion\[\dfrac{r}{5}=\dfrac{s}{10}=\dfrac{\sqrt{r^2+h^2}}{10}.\]Cross multiplying yields \[10r=5\sqrt{r^2+h^2}\implies 100r^2=25r^2+25h^2\implies 75r^2=25h^2\implies 3r^2=h^2\implies h=r\sqrt{3}.\]This is what we need.

Next, the volume of the original cone is simply $\dfrac{\pi\times 25\times 5\sqrt{3}}{3}=\dfrac{125\sqrt{3}}{3}$. 

The volume of the top cone is $\dfrac{\pi\times r^2h}{3}$.
From the given information, we know that \[\dfrac{125\sqrt{3}}{3}-\dfrac{\pi\times r^2h}{3}=\dfrac{125\sqrt{3}}{9}\implies 125\sqrt{3}-r^2h=\dfrac{125\sqrt{3}}{3}\implies r^2h=\dfrac{250\sqrt{3}}{3}.\]We simply substitute the value of $h=r\sqrt{3}$ from above to yield \[r^3\sqrt{3}=\dfrac{250\sqrt{3}}{3}\implies r=\sqrt[3]{\frac{250}{3}}.\]We will leave it as is for now so the decimals don't get messy.

We get $h=r\sqrt{3}\approx 7.56543$ and $s=\sqrt{r^2+h^2}\approx 8.7358$.


The lateral surface area of the frustum is equal to the lateral surface area of the original cone minus the lateral surface area of the top cone. The surface area of the original cone is simply 
$5\times 10\times \pi=50\pi$. 
The surface area of the top cone is $\pi\times r\times s\approx 119.874$. 
So our lateral surface area is 

All we have left is to add the two bases. The total area of thebases is $25\pi+\pi\cdot r^2\approx 138.477$. So our final answer is \[37.207+138.477=175.684\approx\boxed{176}.\]
Solution II 
Using dimensional change and ratio, proportion.

Cut the cone and observe the shape.

The circumference of the larger circle is 20pi (10 is the radius) and the base of

the cone circle circumference is 10pi (5 is the radius), which means that the cut-off cone shape is a half circle because it's \(\dfrac {10\pi } {20\pi }\) or \(\dfrac {1 } {2 }\) of the larger circle. (180 degrees)

To find the part that is the area of the frustum not including the top and bottom circles,

you use the area of the half circle minus the area of the smaller half circle.

Since the volume ratio of the smaller cone to larger cone = 2 to 3, the side ratio of the

two radius is \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\).

Using this ratio, we can get the radius of the smaller circle as 10 * \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\) and the radius of the top circle of the frustum as 5 * \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\).


Now we can solve this :

 \(\dfrac {1 } {2 }\)\(\left[ 10^{2}\pi -\left( 10\times \dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\right) ^{2}\pi \right] \) + \(5^{2}\pi +\left( 5\times \dfrac {\sqrt [3] {2}} {\sqrt {3}}\right) ^{2}\pi \) = about 176 (after you round up)ional change and ratio, proportion.

Cut the cone and observe the shape.

The circumference of the larger circle is 20pi (10 is the radius) and the base of

the cone circle circumference is 10pi (5 is the radius), which means that the cut-off cone shape is a half circle because it's \(\dfrac {10\pi } {20\pi }\) or \(\dfrac {1 } {2 }\) of the larger circle. (180 degrees)

To find the part that is the area of the frustum not including the top and bottom circles,

you use the area of the half circle minus the area of the smaller half circle.

Since the volume ratio of the smaller cone to larger cone = 2 to 3, the side ratio of the

two radius is \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\).

Using this ratio, we can get the radius of the smaller circle as 10 * \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\) and the radius of the top circle of the frustum as 5 * \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\).


Now we can solve this :

 \(\dfrac {1 } {2 }\)\(\left[ 10^{2}\pi -\left( 10\times \dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\right) ^{2}\pi \right] \) + \(5^{2}\pi +\left( 5\times \dfrac {\sqrt [3] {2}} {\sqrt {3}}\right) ^{2}\pi \) = about 176 (after you round up)


Solution III : Another way to find the surface area of the Frustum is : 
median of the two half circle [same as median of the two bases] * the height [difference of the two radius]
\(\dfrac {1} {2}\left( 2\times 10\pi + 2\times 10\times \dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\pi \right)\)* \(\left( 10-10\times \dfrac {\sqrt [3] {2}} {\sqrt [3]{3}}\right)\)