Tuesday, November 12, 2024

A Skill for the 21st Century: Problem Solving by Richard Rusczyk

Does our approach to teaching math fail even the smartest kids ? 

Quotes from that article  "According to research from the University of California, Los Angeles, as many as 60 percent of all college students who intend to study a STEM (science, technology, engineering, math) subject end up transferring out. In an era when politicians and educators are beside themselves with worry over American students’ lagging math and science scores compared to the whiz kids of Shanghai and Japan, this attrition trend so troubles experts it has spawned an entire field of research on “STEM drop-out,” citing reasons from gender and race to GPAs and peer relationships."


A Skill for the 21st Century: Problem Solving by Richard Rusczyk, founder of  "Art of Problem Solving".

Top 10 Skills We Wish Were Taught at School, But Usually Aren't 
from Lifehacker

Sunday, June 2, 2024

Mathcounts prep

 Hi, Thanks for visiting my blog.


E-mail me at thelinscorner@gmail.com if you want to learn with me.  :) :) :) 

Currently I'm running different levels of problem solving lessons, and it's lots of fun learning along with students from different states/countries. 


Sunday, December 10, 2023

Sequences and Series -- Arithmetic and Geometric Sequences

Sequences are fun to learn and not really that difficult. 
There are many similarities between arithmetic and geometric sequences, so 
learn both together. 

Enjoy !!!!! 

From Mthcounts Mini: Sequences and Series

Easier concepts:

Sequences

Arithmetic sequence/determine the nth term

Arithmetic and geometric sequences

Mathcounts strategies : review some sums 

Note : Don't just memorize, but really understand the concepts.

Harder concepts:

Sum and Average of An Evenly Space

Relationship between arithmetic sequences, mean and median

Sequences, series and patterns

Some Common Sums

Friday, May 5, 2023

Pathfinder

From Mathcounts Mini :

Counting/Paths Along a Grid

From Art of Problem Solving

Counting Paths on a Grid 

Math Principles : Paths on a Grid : Two Approaches 


Question #1: How many ways to move the dominoes on a 6 by 6 checker board if you can only move the dominoes to the right or to the bottom starting from the upper left and you can't move the dominoes diagonally? 

Solution :
You can move the dominoes 5 times to the right at most and 5 down to
the bottom at most, so the answer is \(\dfrac {\left( 5+5\right) !} {5! \times 5!}\) = 252 ways







Question # 2: How many ways can you  move from A to B if you can only move downward and to right? 

Solution : There are \(\dfrac {\left( 4+4\right) !} {4!\times 4!}\) * 2 * \(\dfrac {\left( 4+4\right) !} {4!\times 4!}\) = 9800 ways from A to B