Monday, December 24, 2012

2013 Mathcounts State Prep: Counting and Probability

Question #1: Rolling two dice, what is the probability that the product is a multiple of 3?
Solution I :
As long as one of the two numbers turn up as 3 or multiple of 3 (in this case, a "6"), the product of the two numbers will be a multiple of 3.
There are 6 * 6 = 36 ways to get 2 numbers. Out of the 36 pairs, you can have
3 - 1
3 - 2
3 - 3
3 - 4
3 - 5
3 - 6, 6 ways.
However, there are only 5 ways left if the other die has a 3 since 3 - 3 only counts as once.
1 - 3
2 - 3
4 - 3
5 - 3
6 - 3
Next we look at "at least one number is "6".
6 - 1
6 - 2
6 - 4 (We already used 6 - 3)
6 - 5
6 - 6 so 5 ways.
The other way around, we have
1 - 6
2 - 6
4 - 6
5 - 6  Total 4 ways, so the answer is \(\frac{\Large{( 6 + 5 + 5 + 4 )}}{\Large{36}}\) = \(\frac{\Large{ 20}}{\Large{36}}\) = \(\frac{\Large{5}}{\Large{9}}\).

Solution II: 
The easiest way to solve this problem is to use complementary counting, which is 1 (100% or total possible way) - none of the the multiples of 3 showing up, so 1 - \(\frac{\Large{4}}{\Large{6}}\) *\(\frac{\Large{4}}{\Large{6}}\) = 1 - \(\frac{\Large{2}}{\Large{3}}\) * \(\frac{\Large{2}}{\Large{3}}\)=  \(\frac{\Large{5}}{\Large{9}}\)

Question #2: [2002 AMC-12B #16] Juan rolls a fair regular eight-sided die. Then Amal rolls a fair regular six-sided die. What isthe probability that the product of the two rolls is a multiple of 3?
Solution:
Using complementary counting (see solution II of the previous question), 1 - \(\frac{\Large{6}}{\Large{8}}\) *\(\frac{\Large{4}}{\Large{6}}\) = 1 - \(\frac{\Large{3}}{\Large{4}}\) * \(\frac{\Large{2}}{\Large{3}}\)=  \(\frac{\Large{1}}{\Large{2}}\)

Friday, December 21, 2012

2013 Mathcounts State Prep: Similar Triangles and Height to the Hypotenuse

There are many concepts you can learn from this image, which cover numerous similar right triangles, ratio/proportion/dimensional change and the height to the hypotenuse.

Question:
#1: Δ ABC is a 3-4-5 right triangle. What is the height to the hypotenuse? 
Solution: 
Use the area of a triangle to get the height to the hypotenuse. 
Let the height to the hypotenuse be "h"
The area of Δ ABC is  \(\Large\frac{3*4}{2}\)= \(\Large\frac{5*h}{2}\)
Both sides times 2 and consolidate: h\(\Large\frac{3*4}{5}\) = \(\Large\frac{12}{5}\)

Practice: What is the height to the hypotenuse?

Question:
#2: How many similar triangles can you spot?
Solution: 
There are 4 and most students have difficulty comparing the largest one with the other smaller ones.
Δ ABC is similar to Δ ADE, Δ FBD, ΔGEC. Make sure you really understand this and can apply this to numerous similar triangle questions. 

Question: 
#3: What is the area of  DEGF if \(\overline{BF}\) = 9 and \(\overline{GC}\) = 4
Solution: 
Using the two similar triangles Δ FBD and  ΔGEC (I found using symbols to find the corresponding legs
 to be much easier than using the lines.), you have \(\frac{\Large{\overline{BF}}}{\Large{\overline{FD}}}\) = \(\frac{\Large{\overline{GE}}}{\Large{\overline{GC}}}\).
s (side length of the square) = \({\overline{GE}}\) =  \({\overline{FD}}\)
Plug in the given and you have 9 * 4 = s2 so the area of DEGF is 36 square units. (each side then is square root of 36 or 6)

Question: 
#4: Δ ABC is a 9-12-15 right triangle. What is the side length of the square? 
Solution :
The height to the hypotenuse is\(\frac{\Large{9*12}}{\Large{15}}\) = \(\frac{\Large{36}}{\Large{5}}\)
Δ ABC is similar to Δ ADE. Using base and height similarities, you have \(\frac{\Large{\overline{BC}}}{\Large{\overline{DE}}}\) = \(\frac{\Large{15}}{\Large{S}}\) = \(\frac{\frac{\Large{36}}{\Large{5}}}{\frac{\Large{36}}{\Large{5}} - \Large{S}}\)
Cross multiply and you have 108 - 15*S = \(\frac{\Large{36}}{\Large{5}}\) *S
S =\(\frac{\Large{180}}{\Large{37}}\)