Wednesday, August 20, 2014

Notes to Sunday Nights' Problem Solving Group Lessons

This week's work : Please review the last 8 hardest AMC-8 problems from 2005 to 2011 + finish the last 8 hardest AMC-8 problems from 2012 and 2013 if you haven't done that.

Some notes and questions.

Question #1 : How many ways can you climb up a ten-step staircase if you climb only one or two steps at a time ?

Solutions I :
Make a chart, starting with a smaller case.
one-step staircase -- 1 way, which is 1.
two-step staircase -- 2 ways, which is 1, 1 or 2.
three-step staircase -- 3 ways, which is 1 1 1, 1 2 or 2 1.
four-step staircase -- 5 ways, which is 1111, 211, 121, 112, 2222.

Notice the pattern - - 1 , 2, 3, 5, 8, 13, 21, 34, 55, 89, which is the answer; it also happens that it's
part of the Fibonacci numbers.

Why does it work that way ?

Well, if you climb the 3-step staircase, there are two cases :
You either take one step at first, and there are 2-step left, which leaves you two ways to climb the remaining staircase.
Or you take two step at first, and there are 1 step left, which leaves you one way to climb the remaining staircase.
If you climb the 4-step staircase, again, there are two similar cases :
You either take one step at first, and  then there are 3-step left, which leaves you 3 ways to climb the remaining staircase.
Or you take two step at first, and there are 2 step left, which leaves you 2 way to climb the remaining staircase.

Thus, it's always the sum of the previous two terms for the next staircase steps.
This concept is called recursion.

Now try another question :
2010 AMC-8 #25 : Every day at school, Jo climbs a flight of 6 stairs. Joe can take the stairs, 1, 2 or 3 at a time. For example, Jo could climb, 3, then 1, then 2. In how many ways can Jo climb the stairs ?

Solution I :
List out all the possible ways.
111111  -- 1 way
21111 -- 5C1 = 5 ways to arrange the steps
2211 -- 4!/2! x 2! = 6 ways to arrange the steps
222-- 1 way
3111 -- 4C1 or 4 ways to arrange the steps
123 -- 3! or 6 ways
33 -- 1 way
Sum them up and the answer is 24.

Solution II :
Using recursion, starting with the smallest case.
1 step -- 1 way
2 steps-- 2 ways (11, or 2)
3 steps -- 4 ways (111, 21, 12, or 3)
4 steps -- 1 + 2 + 4 = 7 ways (why??)
5 steps -- 2 + 4 + 7 = 13 ways.
6 steps -- 4 + 7 + 13 = 24 ways, which is the answer.

Besides these, please review the following questions.

Answer key below.

Q #1  1988 AMC-8 #25 : A palindrome is a whole number that reads the same forwards as backwards. If one neglects the colon, certain times displayed on a digital watch are palindromes. Three examples are 1: 01, 4: 44 and 12: 21. How many times during a 12-hour period will be palindromes?

Q#2  2004 Mathcounts sprint  #21: If |-2a + 1| < 13, what is the sum of the distinct possible integer values of a?

Q#3  2004 Mathcounts sprint #30 : A particular right square-based pyramid has a volume of 63,960 cubic meters and a height of 30 meters. What is the number of meters in the length of the lateral height (AB) of the pyramid? Express your answer to the nearest whole number.










Answer key :

#1 : 57

#2 : 6

#3 : 50





Thursday, August 14, 2014

Dimensional Change Questions II


Dimensional change questions II:   Answer key below.
If you've found you are not solid yet with these problems,
slow down and start with Dimensional change questions I.

1a. There is a regular cylinder, which has a height equal to its radius. If the radius and height are both increased by 20%, by what % does the total volume of the cylinder increase?

1b. If the radius and height are both decreased by 20%, by what % does the total volume of the cylinder decrease?

1c. If the radius is increased by 50% and the height is decreased by 25%, what % of the volume of the original cylinder does the volume of the new cylinder represent?

1d. If the radius is increased by 25% and the height is decreased by 50%, what % of the volume of the original cylinder does the volume of the new cylinder represent?

1e. If the height is increased by 300%, what % does the radius need to be decreased by for the volume to remain the same?

2. If the side of a cube is increased by 30%, by what % does the total surface area of the cube increase? By what % does the volume increase?

3a. If the volume of a cube increases by 174.4%, by what % does the total surface area of the cube increase?

3b. By what % did the side length of the cube increase?

















 
Answer key to dimensional change questions II: 

1a. There is a regular cylinder, which has a height equal to its radius. If the radius and height are both increased by 20%, by what % does the total volume of the cylinder increase?

72.8%

1b. If the radius and height are both decreased by 20%, by what % does the total volume of the cylinder decrease?

48.8% (Only 0.83 = 0.512 = 51.2% of the original percentage left and 100% - 51.2% = 48.8%.)

1c. If the radius is increased by 50% and the height is decreased by 25%, what % of the volume of the original cylinder does the volume of the new cylinder represent?

168.75%

1d. If the radius is increased by 25% and the height is decreased by 50%, what % of the volume of the original cylinder does the volume of the new cylinder represent?

78.125%

1e. If the height is increased by 300%, what % does the radius need to be decreased by for the volume to remain the same?

50%

2. If the side of a cube is increased by 30%, by what % does the total surface area of the cube increase? By what % does the volume increase?

The surface area will increase 69% and the volume will increase 119.7%

3a. If the volume of a cube increases by 174.4%, by what % does the total surface area of the cube increase?

96%

3b. By what % did the side length of the cube increase?

40%



Tuesday, July 15, 2014

Analytical Geometry : Circle Equations

Circle Equations from Math is Fun 

How to Find Equation of a Circle Passing 3 Given Points 

7 methods included ; Amazing !!

Practice finding the equation of a Circle given 3 points -- 

Q #1 : (1, 3), (7, 3) and (1, -3)

Answer : (x -4)2 + y2 = 18
Q #2  : (3, 4), (3, -4), (0, 5)
Answer : x2 + y2 = 25
Q #3 : A (1, 1), B (2, 4), C (5, 3)
Answer : (x-3)2 + (y -2)2 = 5
Solution : 
The midpoint of line AB on the Cartesian plane is \((\frac{3}{2}, \frac{5}{2})\) and the slope is \((\frac{3}{1})\) so the slope of the perpendicular bisector of line AB is \((\frac{-1}{3})\).
The equation of the line bisect line AB and perpendicular to line AB is thus :  
y - \((\frac{5}{2}\)) =\(\frac{-1}{3}\) [x - \((\frac{3}{2})\)] --- equation 1
The midpoint of line BC on the Cartesian plane is \((\frac{7}{2}, \frac{7}{2})\) and the slope is \((\frac{-1}{3})\) so the slope of the perpendicular bisector of line BC is 3.
And the equation of the line bisect line BC and perpendicular to line BC is 
y - \((\frac{7}{2})\) = 3 [x - \((\frac{7}{2})\)] --- equation 2
Solve the two equations for x and y and you have the center of the circle being (3, 2)
Use distance formula from the center circle to any point to get the radius = 
\(\sqrt{5}\).
The answer is : (x - 3)2 + (x - 2)2 = 5

More practices on similar questions :  (Answers below for self check)

Q #1 : A (2, 5) , B (2, 13) ,  and C (-6, 5 )

Q #2 : A (0, 7), B ( 6, 5 ), and C (-6, -11 )

Q #3 : A (3, -5) , B (-4, 2) and C (1, 7 )








Answer key :

#1 :  (x - 2) 2 + ( y - 9 ) 2 = 32

#2 :   x2 + (y + 3)2 = 100

#3 :  (x - 2) 2 + ( y -1) 2 = 37

Tuesday, July 8, 2014

This Week's Work : Week 53 for Inquisitive Young Mathletes

For this week's work, review 1991 Mathcounts National sprint and target round questions you got wrong or not fast enough. Please try once more to see if you now can solve them at ease.

For this week's review, try the following Mathcounts Mini :

Similar Triangles and Proportional Reasoning

Try the follow-up problems

Detailed solutions

I'll send you notes/solutions/links to some of the hardest problems later.

Take care and happy problem solving !!

Thursday, June 19, 2014

This Week's Work : Week 52 for Inquisitive Young Mathletes

Finish 2000 Mathcounts National sprint and target rounds according to the rules.
Check your e-mail.

E-mail me your scores + what questions you skip, couldn't solve fast, preferably with
the wrong answers put down so I can tell if you have some ideas.

Constructive Counting from Mathcounts Mini

Try some questions from the activity sheet till you fully understand the concepts.

Activity sheet solutions