Monday, February 24, 2025

2024/2025 Mathcounts, AMCs, AIMEs Competition Preparation Strategies

Hi, Thanks for visiting my blog.

E-mail me at thelinscorner@gmail.com if you want to learn with me.  :) :) :) 

Currently I'm running different levels of problem solving lessons, and it's lots of fun learning along with students from different states/countries. 

So many students are not learning smart.

Problem solving is really fun (and a lot of the times very hard, yes).

Good questions are intriguing and delicious, so come join our vibrant community and have the pleasure of finding things out on your own.


There is no overnight success.

My other blogs :


thelinscorner  : Standardized test preps, books, links/videos for life-time learning

Take care and have fun learning.

Don't forget other equally interesting activities/contests, which engage your creativity  and imagination. 

Some also require team work. Go for those and have fun !! 

Don't just do math.  


Before going full throttle mode for competition math, please spend some time reading this
well- thought-out article from BOGTRO at AoPS "Learn How to Learn".

It will save you tons of time and numerous, unnecessary hours without a clear goal, better method in mind.

Less is more. My best students make steady, very satisfactory progress in much less time than those
counterparts who spent double, triple, or even more multiple times of prep with little to show.

It's all about "deliberate practices", "tenacity", and most of all, "the pleasure of finding things out on your own".

Take care and have fun problem solving.

I have been coaching students for many years. By now, I know to achieve stellar performance you need :
Grit (from TED talk), not only that but self-awareness (so you can fairly evaluate your own progress) and a nurturing-caring environment. (Parents need to be engaged as well.)
               
Thanks a lot !!  Mrs. Lin

"Work Smart !!" , "Deliberate practices that target your weakness ", " Relax and get fully rested.", "Pace your time well", "Every point is the same so let go of some questions first; you can always go back to them if time permits."

"It's tremendous efforts preparing for a major event on top of mounting homework and if you are the ones who want to try that, not your parents and you work diligently towards your goal, good for you !!"

"Have fun, Mathcounts changes lives, because at middle school level at least, it's one of those rare occasions that the challenges are hard, especially at the state and national level."

Now, here are the links to get you started: 

Of course use my blog.  Whenever I have time I analyze students' errors and try to find better ways (the most elegant solutions or the Harvey method I hope) to tackle a problem. Use the search button to help you target your weakness area.

Last year's Mathcounts competition problems and answer key


For state/national prep, find your weakness and work on the problems backwards, from the hardest to the easiest. 

Here are some other links/sites that are the best.

Mathcounts Mini : At the very least, finish watching and understanding most of the questions from 2010 till now and work on the follow-up sheets, since detailed solutions are provided along with some more challenging problems.

For those who are aiming for the state/national competition, you can skip the warm-up and go directly to "The Problems" used on the video as well as work on the harder problems afterward.

Art of Problem Solving 

The best place to ask for help on challenging math problems. 
Some of the best students/coaches/teachers are there to help you better your problem solving skills.

                                                             Do Not Rush !!

Awesome site!!
       
For concepts reviewing, try the following three links.
 
Mathcounts Toolbox
 
Coach Monks's Mathcounts Playbook
 
You really need to understand how each concept works for the review sheets to be useful.

To my exasperation, I have kids who mix up the formulas without gaining a true understanding and appreciation of how an elegant, seemingly simple formula can answer myriads of questions.

You don't need a lot of formulas, handbook questions, or test questions to excel.

You simply need to know how the concepts work and apply that knowledge to different problems/situations.

Hope this is helpful!!

Monday, February 17, 2025

Harder Mathcounts State/AMC Questions

2012 Mathcounts State Sprint #30: In rectangle ABCD, shown here, point M is the midpoint of side BC, and point N lies on CD such that DN:NC = 1:4. Segment BN intersects AM and AC at points R and S, respectively. If NS:SR:RB = x:y:z, where x, y and z are positive integers, what is the minimum possible value of x + y + z? 

Solution I :


\(\overline {AB}:\overline {NC}=5:4\) [given]

Triangle ASB is similar to triangle CSN (AAA)

\(\overline {NS}:\overline {SB}= 4 : 5\)

Let \(\overline {NS}= 4a,  \overline {SB}= 5a.\)






Draw a parallel line to \(\overline {NC}\) from M and mark the interception to \(\overline {BN}\)as T.

 \(\overline {MT}: \overline {NC}\) = 1 to 2. [\(\Delta BMT\) and \(\Delta BCN\) are similar triangles ]

\(\overline {NT} = \overline {TB}= \dfrac {4a+5a} {2}=4.5a\)

\(\overline {ST} = 0.5a\)

 \(\overline {MT} :  \overline {AB}\) = 2 to 5
[Previously we know  \(\overline {MT}: \overline {NC}\) = 1 to 2 or 2 to 4 and  \(\overline {NC}:\overline {AB}= 4 : 5\) so the ratio of the two lines  \(\overline {MT} :  \overline {AB}\) is 2 to 5.]


\(\overline {TB} = 4.5 a\)  [from previous conclusion]

Using 5 to 2 line ratio [similar triangles \(\Delta ARB\) and \(\Delta MRT\) , you get \(\overline {BR} =\dfrac {5} {7}\times 4.5a =\dfrac {22.5a} {7}\) and \(\overline {RT} =\dfrac {2} {7}\times 4.5a =\dfrac {9a} {7}\)

Thus, x : y : z = 4a : \( \dfrac {1} {2}a + \dfrac {9a} {7}\) : \(\dfrac {22.5a} {7}\) = 56 : 25 : 45

x + y + z = 126

Solution II : 
From Mathcounts Mini: Similar Triangles and Proportional Reasoning

Solution III: 
Using similar triangles ARB and CRN , you have \(\dfrac {x} {y+z}=\dfrac {5} {9}\).
9x = 5y + 5z ---- equation I

Using similar triangles ASB and CSN and you have \( \dfrac {x+y} {z}=\dfrac {5} {4}\).
4x + 4y = 5z  ---- equation II

Plug in (4x + 4y) for 5z on equation I and you have 9x = 5y + (4x + 4y) ; 5x = 9y ; x = \(\dfrac {9} {5}y\)
Plug in x = \(\dfrac {9} {5}y\) to equation II and you have z  =  \( \dfrac {56} {25}y\)

x : y : z = \(\dfrac {9} {5}y\)  : y  :  \( \dfrac {56} {25}y\) =  45 y :  25y  :  56y

45 + 25 + 56 = 126


























Solution IV : Yes, there is another way that I've found even faster, saved for my private students. :D 

Solution V : from Abhinav, one of my students solving another similar question : 

Two other similar questions from 2016 AMC A, B tests : 

2016 AMC 10 A, #19 : Solution from Abhinav 






2016 AMC 10 B #19 : Solution from Abhinav 





The Grid Technique in Solving Harder Mathcounts Counting Problems : from Vinjai



The following notes are from Vinjai, a student I met online. He graciously shares and offers the tips here on how to tackle those harder Mathcounts counting problems. 

The point of the grid is to create a bijection in a problem that makes it easier to solve. Since the grid just represents a combination, it can be adapted to work with any problem whose answer is a combination.

For example, take an instance of the classic 'stars and bars' problem (also known as 'balls and urns', 'sticks and stones', etc.):
Q: How many ways are there to pick an ordered triple (a, b, c) of nonnegative integers such that a+b+c = 8? (The answer is 10C2 or 45 ways.)
Solution I: 
This problem is traditionally solved by thinking of ordering 8 stars and 2 bars. An example is:
* * * |    | * * * * *
  ^       ^       ^
  a       b       c
This corresponds to a = 3, b = 0, c = 5.

Solution II: 
But this can also be done using the grid technique:




The red path corresponds to the same arrangement: a = 3, b = 0, c = 5. The increase corresponds to the value: a goes from 0 to 3 (that is an increase of 3), b goes from 3 to 3 (that is an increase of 0), and c goes from 3 to 8 (that is an increase of 5). So a = 3, b = 0, c = 5.

Likewise, using a clever 1-1 correspondence, you can map practically any problem with an answer of nCk to fit the grid method. The major advantage of this is that it is an easier way to think about the problem (just like the example I gave may be easier to follow than the original stars and bars approach, and the example I gave in class with the dice can also be thought of in a more numerical sense).