Showing posts with label Mathcounts. Show all posts
Showing posts with label Mathcounts. Show all posts

Saturday, November 29, 2025

2025/2026 Mathcounts, AMCs, AIMEs Competition Preparation Strategies

Hi, Thanks for visiting my blog.

E-mail me at thelinscorner@gmail.com if you want to learn with me.  :) :) :) 

Currently I'm running different levels of problem solving lessons, and it's lots of fun learning along with students from different states/countries. 

So many students are not learning smart.

Problem solving is really fun (and a lot of the times very hard, yes).

Good questions are intriguing and delicious, so come join our vibrant community and have the pleasure of finding things out on your own.


There is no overnight success.

My other blogs :

thelinscorner  : Standardized test preps (ONLY the hardest problems), books, links/videos for life-time learning


Take care and have fun learning.

Don't forget other equally interesting activities/contests, which engage your creativity  and imagination. 

Some also require team work. Go for those and have fun !! 

Don't just do math.  


Before going full throttle mode for competition math, please spend some time reading this
well- thought-out article from BOGTRO at AoPS "Learn How to Learn".

It will save you tons of time and numerous, unnecessary hours without a clear goal, better method in mind.

Less is more. My best students make steady, very satisfactory progress in much less time than those
counterparts who spent double, triple, or even more multiple times of prep with little to show.

It's all about "deliberate practices", "tenacity", and most of all, "the pleasure of finding things out on your own".

Take care and have fun problem solving.

I have been coaching students for many years. By now, I know to achieve stellar performance you need :
Grit (from TED talk), not only that but self-awareness (so you can fairly evaluate your own progress) and a nurturing-caring environment. (Parents need to be engaged as well.)
               
Thanks a lot !!  Mrs. Lin

"Work Smart !!" , "Deliberate practices that target your weakness ", " Relax and get fully rested.", "Pace your time well", "Every point is the same so let go of some questions first; you can always go back to them if time permits."

"It's tremendous efforts preparing for a major event on top of mounting homework and if you are the ones who want to try that, not your parents and you work diligently towards your goal, good for you !!"

"Have fun, Mathcounts changes lives, because at middle school level at least, it's one of those rare occasions that the challenges are hard, especially at the state and national level."

Now, here are the links to get you started: 

Of course use my blog.  Whenever I have time I analyze students' errors and try to find better ways (the most elegant solutions or the Harvey method I hope) to tackle a problem. Use the search button to help you target your weakness area.

Newest Mathcounts' competition problems and answer key

For state/national prep, find your weakness and work on the problems backwards, from the hardest to the easiest. 

Here are some other links/sites that are the best.

Mathcounts Mini : At the very least, finish watching and understanding most of the questions from 2010 till now and work on the follow-up sheets, since detailed solutions are provided along with some more challenging problems.

For those who are aiming for the state/national competition, you can skip the warm-up and go directly to "The Problems" used on the video as well as work on the harder problems afterward.

Art of Problem Solving 

The best place to ask for help on challenging math problems. 
Some of the best students/coaches/teachers are there to help you better your problem solving skills.

                                                             Do Not Rush !!

Awesome site!!
       
For concepts reviewing, try the following three links.
 
Mathcounts Toolbox
 
Coach Monks's Mathcounts Playbook
 
You really need to understand how each concept works for the review sheets to be useful.

To my exasperation, I have kids who mix up the formulas without gaining a true understanding and appreciation of how an elegant, seemingly simple formula can answer myriads of questions.

You don't need a lot of formulas, handbook questions, or test questions to excel.

You simply need to know how the concepts work and apply that knowledge to different problems/situations.

Hope this is helpful!!

Tuesday, November 4, 2025

Hints/links or Solutions to 2014 Harder Mathcounts State Sprint and Target question

Links, notes, Hints or/and solutions to 2014 Mathcounts state harder problems.
2014, 2015 Mathcounts state are harder 

Sprint round:

#14 :
Solution I :
(7 + 8 + 9)  + (x + y + z)  is divisible by 9, so the sum of the three variables could be 3, 12, or 21.
789120 (sum of 3 for the last three digits) works for 8 but not for 7.
21 is too big to distribute among x, y and z (all numbers are district),
thus only x + y + z = 12 works and z is an even number
__ __ 0 does't work (can't have 6 6 0 and the other pairs all have 7, 8 or 9)
264 works (789264 is the number)

Solution II : 
789000 divided by the LCM of 7, 8 and 9, which is 504 = 1565.47...
Try 504 * 1566 = 789264 (it works)
The answer is 264.

#18:
Watch this video from Mathcounts mini and use the same method for the first question,
you'll be able to get the answer. It's still tricky, though.

#23 : Drop the heights of the two isosceles triangles and use similar triangles to get the length of FC.
Then solve.

#24: 
The key is to see 210 is 1024 or about 103

230 = ( 210 ) or about (103  )3about 109 so the answer is 10 digit.

#25:
As you can see, there are two Pythagorean Triples : 9-12-15 and 9-40-41.
Base (40-12) = 28 gives you the smallest area.
The answer is 28 * 18 = 504































#26 : Let there be A, B, C three winners. There are 4 cases to distribute the prizes.
A     B    C
1      1     5    There are 7C1 * 6C1 * \( \dfrac {3!} {2!}\) = 126 ways -- [you can skip the last part for C
because it's 5C5 = 1]

1       2    4    There are 7C1* 6C2 * 3! = 630

1      3     3    There are 7C1 * 6C3 * \( \dfrac {3!} {2!}\) = 420

2      2    3     There are 7C2 * 5C2 * 3 (same as above)

Add them up and the answer is 1806.

If you can't see why it's \( \dfrac {3!} {2!}\) when there is one repeat, try using easier case to help you understand.

What about A, B two winners and 4 prizes ?
There are 2 cases, 1 3 or 2 2, and you'll see how it's done.

#27 : Read this and you'll be able to solve this question at ease, just be careful with the sign change.
Vieta's Formula and the Identity Theory

#28: There are various methods to solve this question.
I use binomial expansion :
\(11^{12}=\left( 13-2\right)^{12}=12C0*13^{12}\)+ \(12C1*13^{11}*2^{1}\)+... \(12C11*13^{1}*2^{11}\)+ \(12C12*2^{12}\) Most of the terms will be evenly divided by 13 except the last term, which is \(2^{12}\) or 4096, which, when divided by 13, leaves a remainder of 1.

Solution II :
\(11\equiv -2\left ( mod13\right)\) ; \((-2)^{12}\equiv 4096\equiv 1\left ( mod13\right)\)

Solution III :  
Or use Fermat's Little Theorem (Thanks, Spencer !!)
\(11^{13-1}\equiv 11^{12}\equiv1 (mod 13)\)

Target Round : 

#3: Lune of Hippocrates : in seconds solved question.
^__^

#6: This question is very similar to this Mathcounts Mini.
My students should get a virtual bump if they got this question wrong.

#8: Solution I : by TMM (Thanks a bunch !!)
Using similar triangles and Pythagorean Theorem.

The height of the cone, which can be found usinthe Pythagorean  is $\sqrt{10^2-5^2}=5\sqrt{3}$. 
Usingthediagram below, let $r$ be the radius of the top cone and let $h$ be the height of the topcone. 
Let $s=\sqrt{r^2+h^2}$ be the slant height of the top cone.

//cdn.artofproblemsolving.com/images/ad1f21b9f50ef27201faea84feca6f2e6e305786.png

Drawing the radius as shown in the diagram, we have two right triangles. Since the bases of the top cone and the original cone are parallel, the two right triangles are similar. So we have the proportion\[\dfrac{r}{5}=\dfrac{s}{10}=\dfrac{\sqrt{r^2+h^2}}{10}.\]Cross multiplying yields \[10r=5\sqrt{r^2+h^2}\implies 100r^2=25r^2+25h^2\implies 75r^2=25h^2\implies 3r^2=h^2\implies h=r\sqrt{3}.\]This is what we need.

Next, the volume of the original cone is simply $\dfrac{\pi\times 25\times 5\sqrt{3}}{3}=\dfrac{125\sqrt{3}}{3}$. 

The volume of the top cone is $\dfrac{\pi\times r^2h}{3}$.
From the given information, we know that \[\dfrac{125\sqrt{3}}{3}-\dfrac{\pi\times r^2h}{3}=\dfrac{125\sqrt{3}}{9}\implies 125\sqrt{3}-r^2h=\dfrac{125\sqrt{3}}{3}\implies r^2h=\dfrac{250\sqrt{3}}{3}.\]We simply substitute the value of $h=r\sqrt{3}$ from above to yield \[r^3\sqrt{3}=\dfrac{250\sqrt{3}}{3}\implies r=\sqrt[3]{\frac{250}{3}}.\]We will leave it as is for now so the decimals don't get messy.

We get $h=r\sqrt{3}\approx 7.56543$ and $s=\sqrt{r^2+h^2}\approx 8.7358$.


The lateral surface area of the frustum is equal to the lateral surface area of the original cone minus the lateral surface area of the top cone. The surface area of the original cone is simply 
$5\times 10\times \pi=50\pi$. 
The surface area of the top cone is $\pi\times r\times s\approx 119.874$. 
So our lateral surface area is 

All we have left is to add the two bases. The total area of thebases is $25\pi+\pi\cdot r^2\approx 138.477$. So our final answer is \[37.207+138.477=175.684\approx\boxed{176}.\]
Solution II 
Using dimensional change and ratio, proportion.

Cut the cone and observe the shape.

The circumference of the larger circle is 20pi (10 is the radius) and the base of

the cone circle circumference is 10pi (5 is the radius), which means that the cut-off cone shape is a half circle because it's \(\dfrac {10\pi } {20\pi }\) or \(\dfrac {1 } {2 }\) of the larger circle. (180 degrees)

To find the part that is the area of the frustum not including the top and bottom circles,

you use the area of the half circle minus the area of the smaller half circle.

Since the volume ratio of the smaller cone to larger cone = 2 to 3, the side ratio of the

two radius is \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\).

Using this ratio, we can get the radius of the smaller circle as 10 * \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\) and the radius of the top circle of the frustum as 5 * \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\).


Now we can solve this :

 \(\dfrac {1 } {2 }\)\(\left[ 10^{2}\pi -\left( 10\times \dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\right) ^{2}\pi \right] \) + \(5^{2}\pi +\left( 5\times \dfrac {\sqrt [3] {2}} {\sqrt {3}}\right) ^{2}\pi \) = about 176 (after you round up)ional change and ratio, proportion.

Cut the cone and observe the shape.

The circumference of the larger circle is 20pi (10 is the radius) and the base of

the cone circle circumference is 10pi (5 is the radius), which means that the cut-off cone shape is a half circle because it's \(\dfrac {10\pi } {20\pi }\) or \(\dfrac {1 } {2 }\) of the larger circle. (180 degrees)

To find the part that is the area of the frustum not including the top and bottom circles,

you use the area of the half circle minus the area of the smaller half circle.

Since the volume ratio of the smaller cone to larger cone = 2 to 3, the side ratio of the

two radius is \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\).

Using this ratio, we can get the radius of the smaller circle as 10 * \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\) and the radius of the top circle of the frustum as 5 * \(\dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\).


Now we can solve this :

 \(\dfrac {1 } {2 }\)\(\left[ 10^{2}\pi -\left( 10\times \dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\right) ^{2}\pi \right] \) + \(5^{2}\pi +\left( 5\times \dfrac {\sqrt [3] {2}} {\sqrt {3}}\right) ^{2}\pi \) = about 176 (after you round up)


Solution III : Another way to find the surface area of the Frustum is : 
median of the two half circle [same as median of the two bases] * the height [difference of the two radius]
\(\dfrac {1} {2}\left( 2\times 10\pi + 2\times 10\times \dfrac {\sqrt [3] {2}} {\sqrt [3] {3}}\pi \right)\)* \(\left( 10-10\times \dfrac {\sqrt [3] {2}} {\sqrt [3]{3}}\right)\)





Monday, October 27, 2025

2023 Mathcounts school sprint more challenging questions -- Thanks to Ani for trying these problems.

#24 – Probability (Unfair Coin)

Gloria has an unfair coin. Let \( p \) be the probability of heads, with \( \tfrac{1}{2} < p < 1 \). When the coin is flipped three times, the probability of getting exactly two heads is twice the probability of getting exactly two tails. Find the probability of tails when the coin is flipped.

Show Solution
Let \( q = 1 - p \).

\[ P(\text{2 heads}) = 3p^2q, \quad P(\text{2 tails}) = 3q^2p. \] Given \( 3p^2q = 2(3q^2p) \Rightarrow p^2q = 2q^2p. \)
Divide by \( pq \) (nonzero) → \( p = 2q \).

Then \(q = 1-2q \)
Hence \( q = = \boxed{\tfrac{1}{3}}. \)

#26 – Expected Value (Sum of Cubes)

Johnny rolls a fair six-sided die six times and sums the cubes of all results. What is the expected value of this total?

Show Solution
Let \( X_i \) be the result of the \( i^\text{th} \) roll. We want \( E[T] = E[X_1^3 + X_2^3 + \cdots + X_6^3] \).

By linearity of expectation: \[ E[T] = 6 \, E[X^3]. \]
\[ \displaystyle E[X^3] = \frac{1^3+2^3+3^3+4^3+5^3+6^3}{6} \]
\[ = \frac{(1+2+3+4+5+6)^2}{6} = \frac{21^2}{6} = \frac{441}{6} = 73.5. \] Therefore E[T] = 6 times 73.5 = 441 -- the answer.
(This uses the identity \( \sum_{k=1}^{n} k^3 = \big(\sum_{k=1}^{n} k\big)^2 \).)

#30 – Powers and Estimation

Find the integer \( n \) such that \[ n^7 = 44{,}231{,}334{,}895{,}529. \]

Show Solution
Since \(80^7 \approx 2.1\times10^{13}\) and \(90^7 \approx 4.78\times10^{13}\), \(n\) is between 80 and 90. The last digit of \(n^7\) matches the last digit of \(n\), which is 9. Modulo-9 check also gives \(n \equiv 8 \pmod9\), so the only candidate is \(n=89\).

Indeed, \(89^7 = 44{,}231{,}334{,}895{,}529\). Thus \(n = \boxed{89}.\)

Thursday, September 11, 2025

Dimentional Change Questions III: Similar Shapes

There are numerous similar triangle questions on Mathcounts.

Here are the basics:



If two triangles are similar, their corresponding angles are congruent and their corresponding sides will have the same ratio or proportion.

Δ ABC and ΔDEF are similar. \(\frac{AB}{DE}\) = \(\frac{AC}{DF}\) = \(\frac{BC}{EF}\)= their height ratio = their perimeter ratio.







Once you know the linear ratio, you can just square the linear ratio to get the area ratio and cube the linear ratio to get the volume ratio. 

Practice Similarity of Triangles here.  Read the notes as well as work on the practice problems.  There is instant feedback online. 

Other practice sheets on Similar Triangles                                                        


Many students have trouble solving this problem when the two similar triangles are superimposed. 

Just make sure you are comparing smaller triangular base with larger triangular base and smaller triangular side with corresponding larger triangular side, etc... In this case:
\(\frac{BC}{DE}\)= \(\frac{AB}{AD}\) = \(\frac{AC}{AE}\)




Questions to ponder (Solutions below)


#1: Find the area ratio of Δ ABC to trapezoid BCDE to DEGF to FGIH. You can easily get those ratios using similar triangle properties. All the points are equally spaced and line \(\overline{BC}\)// \(\overline{DE}\) // \(\overline{FG}\) // \(\overline{HI}\). 



#2: Find the volume of the cone ABC to Frustum BCDE to DEGF to FGIH. Again, you can use the similar cone, dimensional change property to easily get those ratios.Same conditions as the previous question.




Answer key: 

#1:

 #2:


Wednesday, July 16, 2025

Similar to 2023 Mathcounts chapter sprint #30, but harder (level 2)

This question is similar to, but more difficult than the 2023 Mathcounts Chapter Sprint #30, which is as follows:

Consider the seven points on the circle shown. If George draws line segments connecting pairs of points so that each point is connected to exactly two other points, what is the probability that the resulting figure is a convex heptagon? Express your answer as a common fraction.

Try the question first before you read the solution down below.































Convex Heptagon Probability (7 points on a circle)

Label the points 1 – 7 clockwise around the circle. Each point must be joined to exactly two others, so the drawing is a 2-regular graph (a disjoint union of cycles).

1 . Count all edge–sets (2-regular graphs) on 7 labelled points

  • One 7-cycle.
    Fix the cyclic order: the edges of a 7-cycle correspond to a permutation of the 6 points after 1, with direction ignored. Hence
    \( \dfrac{6!}{2}=360 \) distinct 7-cycles.
  • One 3-cycle + one 4-cycle.
    1. Choose the 3-cycle: \( \binom{7}{3}=35 \).
    2. Orient the 3-cycle: \( (3-1)!/2 = 1 \) way.
    3. Orient the remaining 4-cycle: \( (4-1)!/2 = 3 \) ways.
    Total  \( 35 \times 1 \times 3 = 105 \) edge–sets.

Adding the two cases gives the total number of admissible drawings: \[ N_{\text{total}} = 360 + 105 = 465 . \]

2 . Count the favourable edge–set

Exactly one of those drawings is the perimeter \(1\!-\!2\!-\!3\!-\!4\!-\!5\!-\!6\!-\!7\!-\!1\), which yields a convex heptagon.

3 . Probability

\[ \boxed{\displaystyle \Pr(\text{convex heptagon})=\frac{1}{465}} \]

Checks: the same counting method gives \(70\) total for 6 points (hexagon) and \(3507\) total for 8 points (octagon), agreeing with \(1/70\) and \(1/3507\) respectively.

Sunday, May 18, 2025

The Grid Technique in Solving Harder Mathcounts Counting Problems : from Vinjai



The following notes are from Vinjai, a student I met online. He graciously shares and offers the tips here on how to tackle those harder Mathcounts counting problems. 

The point of the grid is to create a bijection in a problem that makes it easier to solve. Since the grid just represents a combination, it can be adapted to work with any problem whose answer is a combination.

For example, take an instance of the classic 'stars and bars' problem (also known as 'balls and urns', 'sticks and stones', etc.):
Q: How many ways are there to pick an ordered triple (a, b, c) of nonnegative integers such that a+b+c = 8? (The answer is 10C2 or 45 ways.)
Solution I: 
This problem is traditionally solved by thinking of ordering 8 stars and 2 bars. An example is:
* * * |    | * * * * *
  ^       ^       ^
  a       b       c
This corresponds to a = 3, b = 0, c = 5.

Solution II: 
But this can also be done using the grid technique:




The red path corresponds to the same arrangement: a = 3, b = 0, c = 5. The increase corresponds to the value: a goes from 0 to 3 (that is an increase of 3), b goes from 3 to 3 (that is an increase of 0), and c goes from 3 to 8 (that is an increase of 5). So a = 3, b = 0, c = 5.

Likewise, using a clever 1-1 correspondence, you can map practically any problem with an answer of nCk to fit the grid method. The major advantage of this is that it is an easier way to think about the problem (just like the example I gave may be easier to follow than the original stars and bars approach, and the example I gave in class with the dice can also be thought of in a more numerical sense).

Wednesday, May 14, 2025

Similar Triangles: Team question : Beginning level

9. In the figure below, quadrilateral CDEG is a square with CD = 3, and quadrilateral BEFH is a rectangle. If EB = 5, how many units is BH? Express your answer as a mixed number

Triangle BED is a 3-4-5 right triangle and is similar to triangle GEF.

BE : ED = GE : EF = 5 : 3 = 3 : FE

EF = 9/5 = BH  The answer

Monday, February 17, 2025

Harder Mathcounts State/AMC Questions: Intermediate level if you can solve in less than 2 mins.

2012 Mathcounts State Sprint #30: In rectangle ABCD, shown here, point M is the midpoint of side BC, and point N lies on CD such that DN:NC = 1:4. Segment BN intersects AM and AC at points R and S, respectively. If NS:SR:RB = x:y:z, where x, y and z are positive integers, what is the minimum possible value of x + y + z? 

Solution I :


\(\overline {AB}:\overline {NC}=5:4\) [given]

Triangle ASB is similar to triangle CSN (AAA)

\(\overline {NS}:\overline {SB}= 4 : 5\)

Let \(\overline {NS}= 4a,  \overline {SB}= 5a.\)






Draw a parallel line to \(\overline {NC}\) from M and mark the interception to \(\overline {BN}\)as T.

 \(\overline {MT}: \overline {NC}\) = 1 to 2. [\(\Delta BMT\) and \(\Delta BCN\) are similar triangles ]

\(\overline {NT} = \overline {TB}= \dfrac {4a+5a} {2}=4.5a\)

\(\overline {ST} = 0.5a\)

 \(\overline {MT} :  \overline {AB}\) = 2 to 5
[Previously we know  \(\overline {MT}: \overline {NC}\) = 1 to 2 or 2 to 4 and  \(\overline {NC}:\overline {AB}= 4 : 5\) so the ratio of the two lines  \(\overline {MT} :  \overline {AB}\) is 2 to 5.]


\(\overline {TB} = 4.5 a\)  [from previous conclusion]

Using 5 to 2 line ratio [similar triangles \(\Delta ARB\) and \(\Delta MRT\) , you get \(\overline {BR} =\dfrac {5} {7}\times 4.5a =\dfrac {22.5a} {7}\) and \(\overline {RT} =\dfrac {2} {7}\times 4.5a =\dfrac {9a} {7}\)

Thus, x : y : z = 4a : \( \dfrac {1} {2}a + \dfrac {9a} {7}\) : \(\dfrac {22.5a} {7}\) = 56 : 25 : 45

x + y + z = 126

Solution II : 
From Mathcounts Mini: Similar Triangles and Proportional Reasoning

Solution III: 
Using similar triangles ARB and CRN , you have \(\dfrac {x} {y+z}=\dfrac {5} {9}\).
9x = 5y + 5z ---- equation I

Using similar triangles ASB and CSN and you have \( \dfrac {x+y} {z}=\dfrac {5} {4}\).
4x + 4y = 5z  ---- equation II

Plug in (4x + 4y) for 5z on equation I and you have 9x = 5y + (4x + 4y) ; 5x = 9y ; x = \(\dfrac {9} {5}y\)
Plug in x = \(\dfrac {9} {5}y\) to equation II and you have z  =  \( \dfrac {56} {25}y\)

x : y : z = \(\dfrac {9} {5}y\)  : y  :  \( \dfrac {56} {25}y\) =  45 y :  25y  :  56y

45 + 25 + 56 = 126


























Solution IV : Yes, there is another way that I've found even faster, saved for my private students. :D 

Solution V : from Abhinav, one of my students solving another similar question : 

Two other similar questions from 2016 AMC A, B tests : 

2016 AMC 10 A, #19 : Solution from Abhinav 






2016 AMC 10 B #19 : Solution from Abhinav