Wednesday, March 23, 2022

Dimensional Change






There are lots of questions on dimensional change and this is a very common one.

Make sure you understand the relationship among linear, 2-D (area) and 3-D (volume) ratio.

There are many similar triangles featured in the image on the left.
Each of the two legs of the largest triangles is split into 4 equal side lengths.





                                                                                            


Question : What is the area ratio of the sum of the two white trapezoids to the largest triangle? 
\(\dfrac {\left( 3+7\right) } {16}=\dfrac {10} {16}=\dfrac{5}{8}\)  

Question: If the area of the largest triangles are 400 square units, what is the area of the blue-colored trapezoid?
\(\dfrac {5} {16}\times 400\) =125 square units 






Again, each of the two legs are split into three equal segments. 

The volume ration of the cone on the top to the middle frustum to the 
bottom frustum is 1 : 7 : 19. 
 
Make sure you understand why.










 

Sunday, March 6, 2022

Mass Points Geometry

Some of the harder/hardest questions at Mathcounts can be tackled at ease using mass point geometry
so spend some time understanding it.

Basics 

2014-15 Mathcounts handbook Mass Point Geometry Stretch
from page 39 to page 40

(Talking about motivation, yes, there are students already almost finish
this year's Mathcounts' handbook harder problems.)

From Wikipedia

From AoPS

Mass Point Geometry by Tom Rike

Another useful notes 

Videos on Mass Point :

Mass Points Geometry Part I 

Mass Points Geometry : Split Masses Part II 

Mass Points Geometry : Part III 

other videos from Youtube on Mass Points

It's much more important to fully understand how it works, the easier questions the weights align
very nicely.

The harder problems the weights are messier, not aligning nicely, so you need to find ways to may them integers (LCM) for easier solving.

Let me know if you have questions. I love to help (:D) if you've tried.